Біографії Характеристики Аналіз

Ступені окислення всіх хімічних елементів у сполуках. Ступінь окислення

У хімії терміни «окислення» і «відновлення» означає реакції, у яких атом чи група атомів втрачають чи, відповідно, набувають електрони. Ступінь окислення - це чисельна величина, що приписується одному або кільком атомам, що характеризує кількість перерозподіляються електронів і показує, яким чином ці електрони розподіляються між атомами при реакції. Визначення цієї величини може бути як простою, так і досить складною процедурою, залежно від атомів і молекул, що складаються з них. Більш того, атоми деяких елементів можуть володіти декількома ступенями окиснення. На щастя, визначення ступеня окислення існують нескладні однозначні правила, для впевненого користування якими достатньо знання основ хімії та алгебри.

Кроки

Частина 1

Визначення ступеня окиснення за законами хімії

    Визначте, чи є речовина, що розглядається, елементарною.Ступінь окислення атомів поза хімічною сполукою дорівнює нулю. Це справедливо як для речовин, утворених з окремих вільних атомів, так і для таких, що складаються з двох або багатоатомних молекул одного елемента.

    • Наприклад, Al (s) і Cl 2 мають ступінь окислення 0, оскільки обидва знаходяться у хімічно незв'язаному елементарному стані.
    • Зверніть увагу, що алотропна форма сірки S 8 або октасера, незважаючи на свою нетипову будову, також характеризується нульовим ступенем окислення.
  1. Визначте, чи складається речовина, що розглядається, з іонів.Ступінь окислення іонів дорівнює їхньому заряду. Це справедливо як вільних іонів, так тих, які входять до складу хімічних сполук.

    • Наприклад, ступінь окислення іона Cl - дорівнює -1.
    • Ступінь окислення іона Cl у складі хімічної сполуки NaCl також дорівнює -1. Оскільки іон Na, за визначенням, має заряд +1 ми укладаємо, що заряд іона Cl -1, і таким чином ступінь його окислення дорівнює -1.
  2. Врахуйте, що іони металів можуть мати кілька ступенів окиснення.Атоми багатьох металевих елементів можуть іонізуватися різні величини. Наприклад, заряд іонів такого металу як залізо (Fe) дорівнює +2 або +3. Заряд іонів металу (і їх ступінь окислення) можна визначити зарядами іонів інших елементів, з якими цей метал входить до складу хімічної сполуки; у тексті цей заряд позначається римськими цифрами: залізо (III) має ступінь окислення +3.

    • Як приклад розглянемо з'єднання, що містить іон алюмінію. Загальний заряд з'єднання AlCl 3 дорівнює нулю. Оскільки нам відомо, що іони Cl - мають заряд -1, і в поєднанні міститься 3 таких іони, для загальної нейтральності речовини, що розглядається, іон Al повинен мати заряд +3. Отже, у разі ступінь окислення алюмінію дорівнює +3.
  3. Ступінь окиснення кисню дорівнює -2 (за деякими винятками).Майже завжди атоми кисню мають ступінь окислення -2. Є кілька винятків із цього правила:

    • Якщо кисень знаходиться в елементарному стані (O 2), його ступінь окислення дорівнює 0, як і у інших елементарних речовин.
    • Якщо кисень входить до складу перекису, Його ступінь окислення дорівнює -1. Перекису - це група сполук, що містять просту кисень-кисневий зв'язок (тобто аніон перекису O 2 -2). Наприклад, у складі молекули H 2 O 2 (перекис водню) кисень має заряд і рівень окислення -1.
    • У поєднанні з фтором кисень має ступінь окислення +2, читайте правило для фтору нижче.
  4. Водень характеризується ступенем окиснення +1, за деякими винятками.Як і для кисню, тут також є винятки. Як правило, ступінь окислення водню дорівнює +1 (якщо він не знаходиться в елементарному стані H2). Однак у сполуках, званих гідридами, ступінь окислення водню становить -1.

    • Наприклад, H 2 O ступінь окислення водню дорівнює +1, оскільки атом кисню має заряд -2, і для загальної нейтральності необхідні два заряди +1. Тим не менш, у складі гідриду натрію ступінь окислення водню вже -1, так як іон Na несе заряд +1 і для загальної електронейтральності заряд атома водню (а тим самим і його ступінь окислення) повинен дорівнювати -1.
  5. Фтор завждимає ступінь окиснення -1.Як було зазначено, ступінь окислення деяких елементів (іони металів, атоми кисню у перекисах тощо) може змінюватися залежно від низки чинників. Ступінь окиснення фтору, однак, незмінно становить -1. Це тим, що це елемент має найбільшу електронегативність - інакше кажучи, атоми фтору найменш охоче розлучаються з власними електронами і найактивніше притягують чужі електрони. Таким чином, їхній заряд залишається незмінним.

  6. Сума ступенів окислення у поєднанні дорівнює його заряду.Ступені окислення всіх атомів, що входять до хімічної сполуки, у сумі повинні давати заряд цієї сполуки. Наприклад, якщо з'єднання нейтральне, сума ступенів окислення всіх його атомів повинна дорівнювати нулю; якщо з'єднання є багатоатомним іоном із зарядом -1, сума ступенів окиснення дорівнює -1, і так далі.

    • Це хороший метод перевірки - якщо сума ступенів окислення не дорівнює загальному заряду з'єднання, то ви десь помилилися.

    Частина 2

    Визначення ступеня окиснення без використання законів хімії
    1. Знайдіть атоми, які не мають суворих правил щодо ступеня окиснення.По відношенню до деяких елементів немає твердо встановлених правил знаходження ступеня окислення. Якщо атом не підпадає під жодне правило з перерахованих вище, і ви не знаєте його заряду (наприклад, атом входить до складу комплексу, і його заряд не вказаний), ви можете встановити ступінь окислення такого атома методом виключення. Спочатку визначте заряд решти атомів сполуки, а потім із відомого загального заряду сполуки обчисліть ступінь окислення даного атома.

      • Наприклад, у поєднанні Na 2 SO 4 невідомий заряд атома сірки (S) - ми лише знаємо, що він не нульовий, оскільки сірка знаходиться не в елементарному стані. Ця сполука є хорошим прикладом для ілюстрації методу алгебри визначення ступеня окислення.
    2. Знайдіть ступені окислення інших елементів, що входять до з'єднання.За допомогою описаних вище правил визначте ступені окислення інших атомів сполуки. Не забувайте про винятки правил у випадку атомів O, H і так далі.

      • Для Na 2 SO 4 , користуючись нашими правилами, ми бачимо, що заряд (отже і ступінь окислення) іона Na дорівнює +1, а кожного з атомів кисню становить -2.
    3. Знайдіть невідомий ступінь окислення із заряду з'єднання.Тепер у вас є всі дані для простого розрахунку шуканого ступеня окислення. Запишіть рівняння, у лівій частині якого буде сума числа, отриманого на попередньому кроці обчислень, та невідомого ступеня окислення, а у правій – загальний заряд з'єднання. Іншими словами, (Сума відомих ступенів окислення) + (шуканий ступінь окислення) = (заряд з'єднання).

      • У нашому випадку Na 2 SO 4 рішення виглядає так:
        • (Сума відомих ступенів окислення) + (шуканий ступінь окислення) = (заряд з'єднання)
        • -6 + S = 0
        • S = 0 + 6
        • S = 6. У Na 2 SO 4 сірка має ступінь окислення 6 .
    • У з'єднаннях сума всіх ступенів окиснення повинна дорівнювати заряду. Наприклад, якщо з'єднання являє собою двоатомний іон, сума ступенів окислення атомів повинна дорівнювати загальному іонному заряду.
    • Дуже корисно вміти користуватися періодичною таблицею Менделєєва і знати, де в ній розміщуються металеві та неметалеві елементи.
    • Ступінь окислення атомів в елементарному вигляді завжди дорівнює нулю. Ступінь окислення одиничного іона дорівнює його заряду. Елементи групи 1A таблиці Менделєєва, такі як водень, літій, натрій, елементарному вигляді мають ступінь окислення +1; ступінь окислення металів групи 2A, таких як магній та кальцій, в елементарному вигляді дорівнює +2. Кисень і водень, залежно від виду хімічного зв'язку, можуть мати 2 різні значення ступеня окислення.

У школі хімія досі займає місце одного з найскладніших предметів, який, зважаючи на те, що приховує безліч труднощів, викликає у учнів (зазвичай це в період з 8 по 9 класи) більше ненависті та байдужості до вивчення, ніж інтересу. Все це знижує якість та кількість знань з предмету, хоча у багатьох сферах досі потрібні фахівці у цій галузі. Так, складних моментів та незрозумілих правил у хімії іноді навіть більше, ніж здається. Одне з питань, які хвилюють більшість учнів, це те, що таке ступінь окислення і як визначати ступеня окислення елементів.

Важливе правило - правило розміщення, алгоритми

Тут багато говориться про такі сполуки, як оксиди. Для початку будь-який учень повинен вивчити визначення оксидів- це складні сполуки двох елементів, у складі перебуває кисень. До класу бінарних сполук оксиди відносять через те, що в алгоритмі кисень стоїть другим по черзі. При визначенні показника важливо знати правила розміщення та розрахувати алгоритм.

Алгоритми для кислотних оксидів

Ступені окислення -це чисельні вирази валентності елементів. Наприклад, кислотні оксиди утворені за певним алгоритмом: спочатку йдуть неметали або метали (їх валентність зазвичай від 4 до 7), а потім йде кисень, як і має бути, другим по порядку, його валентність дорівнює двом. Визначається вона легко – за періодичною таблицею хімічних елементів Менделєєва. Ступінь окислення елементів - це показник, який передбачає або позитивне, або негативне число.

На початку алгоритму, зазвичай, неметал, та її ступінь окислення - позитивна. Неметал кисень в оксидних сполуках має стабільне значення, яке дорівнює -2. Щоб визначити вірність розміщення всіх значень, необхідно помножити всі наявні цифри на індекси в одного конкретного елемента, якщо добуток з урахуванням всіх мінусів і плюсів дорівнює 0, то розташування достовірна.

Розстановка в кислотах, що містять кисень

Кислоти є складними речовинами, вони пов'язані з будь-яким кислотним залишком і містять один або кілька атомів водню. Тут, для обчислення ступеня, потрібні навички з математики, оскільки показники, необхідні обчислення, цифрові. У водню чи протона він завжди однаковий – +1. У негативного іона кисню негативний ступінь окиснення -2.

Після всіх цих дій можна визначити ступінь окислення і центрального елемента формули. Вираз для її обчислення є формулою у вигляді рівняння. Наприклад, для сірчаної кислоти рівняння буде одним невідомим.

Основні терміни в ОВР

ОВР – це відновлювально-окисні реакції.

  • Ступінь окислення будь-якого атома – характеризує здатність цього атома приєднувати або віддавати іншим атомам електрони іонів (або атомів);
  • Прийнято вважати окислювачами або заряджені атоми або незаряджені іони;
  • Відновником у цьому випадку будуть заряджені іони або, навпаки, незаряджені атоми, які втрачають свої електрони в процесі хімічної взаємодії;
  • Окислення полягає у віддачі електронів.

Як розставляти ступінь окислення в солях

Солі складаються з одного металу та одного або кількох кислотних залишків. Методика визначення така сама, як і в кислотовмісних кислотах.

Метал, який безпосередньо утворює сіль, розташовується в головній підгрупі, його ступінь дорівнюватиме номеру його групи, тобто завжди залишатиметься стабільним, позитивним показником.

Як приклад можна розглянути розстановку ступенів окиснення в нітраті натрію. Сіль утворюється за допомогою елемента головної підгрупи 1 групи, відповідно, ступінь окислення буде позитивною і дорівнює одиниці. У нітратах кисень має значення – -2. Для того щоб отримати чисельне значення, для початку складається рівняння з одним невідомим, враховуючи всі мінуси та плюси значень: +1+Х-6=0. Вирішивши рівняння, можна дійти того факту, що чисельний показник позитивний і дорівнює +5. Це показник азоту. Важливий ключ, щоб вирахувати ступінь окислення – таблиця.

Правило розміщення в основних оксидах

  • Оксиди типових металів у будь-яких сполуках мають стабільний показник окислення, він завжди не більший за +1, або в інших випадках +2;
  • Цифровий показник металу обчислюється з допомогою періодичної таблиці. Якщо елемент міститься у головній підгрупі 1 групи, його значення буде +1;
  • Значення оксидів, враховуючи та його індекси, після множення суммовано повинні дорівнювати нулю, т.к. молекула у яких нейтральна, частка, позбавлена ​​заряду;
  • Метали основної підгрупи 2 групи мають стійкий позитивний показник, який дорівнює +2.

У багатьох шкільних підручниках та посібниках вчать складати формули з валентностей, навіть для з'єднань з іонними зв'язками. Для спрощення процедури складання формул це, з погляду, допустимо. Але треба розуміти, що це не зовсім коректно через викладені вище причини.

Більш універсальним поняттям є уявлення про ступінь окислення. За значеннями ступенів окислення атомів так само, як і за значеннями валентності, можна складати хімічні формули і записувати формульні одиниці.

Ступінь окислення- Це умовний заряд атома в частинці (молекулі, іоні, радикалі), обчислений у наближенні того, що всі зв'язки в частинці є іонними.

Перш ніж визначати ступеня окислення, необхідно порівняти електронегативність зв'язуваних атомів. Атом із великим значенням електронегативності має негативний ступінь окислення, а з меншим позитивний.


З метою об'єктивного порівняння значень електронегативності атомів при розрахунку ступенів окиснення, у 2013 році IUPAC дав рекомендацію використовувати шкалу Аллена.

* Так, наприклад, за шкалою Аллена електронегативність азоту 3,066, а хлору 2,869.

Проілюструємо це визначення на прикладах. Складемо структурну формулу молекули води.

Ковалентні полярні зв'язки O-H позначені синім кольором.

Уявімо, що обидві зв'язки є не ковалентними, а іонними. Якби вони були іонними, то з кожного атома водню більш електронегативний атом кисню перейшло б по одному електрону. Позначимо ці переходи синіми стрілками.

*В цьомуНаприклад, стрілка служить для наочної ілюстрації повного переходу електронів, а чи не для ілюстрації індуктивного ефекту.

Легко помітити, що число стрілок показує кількість електронів, що перейшли, а їх напрям - напрям переходу електронів.

На атом кисню спрямовано дві стрілки, це означає, що до атома кисню переходить два електрони: 0 + (-2) = -2. На атомі кисню утворюється рівний заряд -2. Це і є ступінь окислення кисню в молекулі води.

З кожного атома водню йде за одним електроном: 0 - (-1) = +1. Отже, атоми водню мають ступінь окислення рівний +1.

Сума ступенів окислення завжди дорівнює загальному заряду частки.

Наприклад, сума ступенів окислення у молекулі води дорівнює: +1(2) + (-2) = 0. Молекула - електронейтральна частка.

Якщо ми обчислюємо ступеня окиснення в іоні, то сума ступенів окиснення, відповідно, дорівнює його заряду.

Значення ступеня окислення прийнято вказувати у верхньому правому куті символу елемента. Причому, знак пишуть попереду числа. Якщо знак стоїть після числа – це заряд іона.


Наприклад, S -2 - атом сірки в ступені окислення -2, S 2 - аніон сірки із зарядом -2.

S +6 O -2 4 2 - значення ступенів окислення атомів у сульфат-аніоні (заряд іона виділено зеленим кольором).

Тепер розглянемо випадок, коли з'єднання має змішані зв'язки: Na 2 SO 4 . Зв'язок між сульфат-аніоном та катіонами натрію - іонний, зв'язки між атомом сірки та атомами кисню в сульфат-іоні - ковалентні полярні. Запишемо графічну формулу сульфату натрію, а стрілками вкажемо напрямок переходу електронів.

*Структурна формула відображає порядок ковалентних зв'язків у частинці (молекулі, іоні, радикалі). Структурні формули застосовують лише частинок з ковалентними зв'язками. Для частинок з іонними зв'язками поняття структурної формули немає сенсу. Якщо частинці є іонні зв'язку, то застосовують графічну формулу.

Бачимо, що з центрального атома сірки йде шість електронів, отже ступінь окислення сірки 0 - (-6) = +6.

Кінцеві атоми кисню приймають по два електрони, значить їх ступеня окислення 0 + (-2) = -2

Місткові атоми кисню приймають по два електрони, їх ступінь окислення дорівнює -2.

Визначити ступеня окиснення можна і за структурно-графічною формулою, де рисками вказують ковалентні зв'язки, а в іонів вказують заряд.

У цій формулі місткові атоми кисню вже мають поодинокі негативні заряди і до них додатково приходить електроном від атома сірки -1 + (-1) = -2, значить їх ступеня окислення рівні -2.


Ступінь окислення іонів натрію дорівнює їх заряду, тобто. +1.

Визначимо ступеня окислення елементів надпероксиді (супероксиді) калію. Для цього складемо графічну формулу супероксиду калію, стрілочкою покажемо перерозподіл електронів. Зв'язок O-O є ковалентним неполярним, тому в ньому перерозподіл електронів не вказується.

* Надпероксид-аніон є іон-радикалом. Формальний заряд одного атома кисню дорівнює -1, а іншого з неспареним електроном 0.

Бачимо, що ступінь окислення калію дорівнює +1. Ступінь окислення атома кисню, записаного у формулі навпроти калію, дорівнює -1. Ступінь окиснення другого атома кисню дорівнює 0.

Так само можна визначити ступеня окислення і за структурно-графічною формулою.

У кружечках вказані формальні заряди іона калію та одного з атомів кисню. При цьому значення формальних зарядів збігаються зі значеннями ступенів окиснення.

Так як обидва атоми кисню в надпероксид-аніоні мають різні значення ступеня окислення, можна обчислити середньо-арифметичну міру окисленнякисню.


Вона дорівнюватиме / 2 = - 1/2 = -0,5.

Значення середньоарифметичних ступенів окислення зазвичай вказують у брутто-формулах або формульних одиницях, щоб показати, що сума ступенів окислення дорівнює загальному заряду системи.

Для випадку з надпероксидом: +1 + 2(-0,5) = 0

Легко визначити ступеня окислення використовуючи електронно-точкові формули, в яких вказують крапками неподілені електронні пари та електрони ковалентних зв'язків.

Кисень - елемент VIА - групи, отже у його атомі 6 валентних електронів. Уявимо, що у молекулі води зв'язку іонні, у разі атом кисню отримав би октет електронів.

Ступінь окиснення кисню відповідно дорівнює: 6 - 8 = -2.

А атомів водню: 1 – 0 = +1

Вміння визначати ступеня окислення за графічними формулами безцінно розуміння сутності цього поняття, як і це вміння знадобиться у курсі органічної хімії. Якщо ж ми маємо справу з неорганічними речовинами, то необхідно вміти визначати ступеня окислення за молекулярними формулами та формульними одиницями.

Для цього перш за все потрібно зрозуміти, що ступеня окиснення бувають постійними та змінними. Елементи, що виявляють постійний ступінь окислення, необхідно запам'ятати.

Будь-який хімічний елемент характеризується вищим і нижчим ступенями окислення.

Нижчий ступінь окислення- це заряд, який набуває атома в результаті прийому максимальної кількості електронів на зовнішній електронний шар.


З огляду на це, нижчий ступінь окислення має негативне значення,за винятком металів, атоми яких електрони ніколи не приймають через низькі значення електронегативності. Метали мають нижчий ступінь окислення рівний 0.


Більшість неметалів основних підгруп намагається заповнити свій зовнішній електронний шар до восьми електронів, після чого атом набуває стійкої конфігурації ( правило октету). Тому, щоб визначити нижчий ступінь окислення, необхідно зрозуміти, скільки атому не вистачає валентних електронів до октету.

Наприклад, азот – елемент VА групи, це означає, що в атомі азоту п'ять валентних електронів. До октету атома азоту не вистачає трьох електронів. Значить нижчий ступінь окиснення азоту дорівнює: 0 + (-3) = -3

Електронегативність, як і інші властивості атомів хімічних елементів, змінюється із збільшенням порядкового номера елемента періодично:

Графік вище показує періодичність зміни електронегативності елементів основних підгруп залежно від порядкового номера елемента.

При русі вниз по підгрупі таблиці Менделєєва електронегативність хімічних елементів зменшується, під час руху праворуч за періодом зростає.

Електронегативність відбиває неметаллічність елементів: що вище значення електронегативності, то більше в елемента виражені неметалеві властивості.

Ступінь окислення

Як розрахувати ступінь окислення елемента сполуки?

1) Ступінь окиснення хімічних елементів у простих речовинах завжди дорівнює нулю.

2) Існують елементи, що виявляють у складних речовинах постійний ступінь окислення:

3) Існують хімічні елементи, які виявляють у переважній більшості сполук постійний ступінь окислення. До таких елементів відносяться:

Елемент

Ступінь окислення практично у всіх сполуках

Винятки

водень H +1 Гідриди лужних та лужноземельних металів, наприклад:
кисень O -2 Пероксиди водню та металів:

Фторид кисню

4) Алгебраїчна сума ступенів окислення всіх атомів у молекулі завжди дорівнює нулю. Алгебраїчна сума ступенів окислення всіх атомів в іоні дорівнює заряду іона.

5) Вища (максимальна) ступінь окислення дорівнює номеру групи. Винятки, які не підпадають під це правило, - елементи побічної підгрупи І групи, елементи побічної підгрупи VIII групи, а також кисень і фтор.

Хімічні елементи, номер групи яких не збігається з їх вищим ступенем окиснення (обов'язкові для запам'ятовування)

6) Нижчий ступінь окиснення металів завжди дорівнює нулю, а нижчий ступінь окиснення неметалів розраховується за формулою:

нижчий ступінь окислення неметалу = № групи − 8

Відштовхуючись від наведених вище правил, можна встановити ступінь окислення хімічного елемента в будь-якій речовині.

Знаходження ступенів окислення елементів у різних сполуках

Приклад 1

Визначте ступеня окиснення всіх елементів у сірчаній кислоті.

Рішення:

Запишемо формулу сірчаної кислоти:

Ступінь окиснення водню у всіх складних речовинах +1 (крім гідридів металів).

Ступінь окислення кисню у всіх складних речовинах дорівнює -2 (крім пероксидів та фториду кисню OF 2). Розставимо відомі ступені окислення:

Позначимо ступінь окислення сірки як x:

Молекула сірчаної кислоти, як і молекула будь-якої речовини, загалом електронейтральна, т.к. сума ступенів окиснення всіх атомів у молекулі дорівнює нулю. Схематично це можна зобразити так:

Тобто. ми отримали наступне рівняння:

Вирішимо його:

Таким чином, ступінь окислення сірки у сірчаній кислоті дорівнює +6.

Приклад 2

Визначте ступінь окислення всіх елементів дихромату амонію.

Рішення:

Запишемо формулу дихромату амонію:

Як і в попередньому випадку, ми можемо розставити ступені окислення водню та кисню:

Проте бачимо, що невідомі ступеня окислення відразу в двох хімічних елементів — азоту і хрому. Тому знайти ступеня окислення аналогічно попередньому прикладу ми можемо (одне рівняння з двома змінними немає єдиного рішення).

Звернемо увагу на те, що вказана речовина відноситься до класу солей і, відповідно, має іонну будову. Тоді справедливо можна сказати, що до складу дихромату амонію входять катіони NH 4 + (заряд даного катіону можна подивитися у таблиці розчинності). Отже, так як у формульній одиниці дихромату амонію два позитивні однозарядні катіони NH 4 + , заряд дихромат-іона дорівнює -2, оскільки речовина в цілому електронейтрально. Тобто. речовина утворена катіонами NH 4 + та аніонами Cr 2 O 7 2- .

Ми знаємо ступеня окислення водню та кисню. Знаючи, що сума ступенів окиснення атомів всіх елементів в іоні дорівнює заряду, і позначивши ступеня окиснення азоту та хрому як xі yвідповідно, ми можемо записати:

Тобто. ми отримуємо два незалежні рівняння:

Вирішуючи які, знаходимо xі y:

Таким чином, у дихроматі амонію ступеня окиснення азоту -3, водню +1, хрому +6, а кисню -2.

Як визначати ступеня окиснення елементів в органічних речовинах можна почитати.

Валентність

Валентність атомів позначається римськими цифрами: І, ІІ, ІІІ тощо.

Валентні можливості атома залежать від кількості:

1) неспарених електронів

2) неподілених електронних пар на орбіталях валентних рівнів

3) порожніх електронних орбіталей валентного рівня

Валентні можливості атома водню

Зобразимо електронно-графічну формулу атома водню:

Було сказано, що на валентні можливості можуть впливати три фактори – наявність неспарених електронів, наявність неподілених електронних пар на зовнішньому рівні та наявність вакантних (порожніх) орбіталей зовнішнього рівня. Ми бачимо на зовнішньому (і єдиному) енергетичному рівні один неспарений електрон. Виходячи з цього, водень може точно мати валентність, що дорівнює I. Однак на першому енергетичному рівні є лише один підрівень — s,тобто. атом водню на зовнішньому рівні немає як неподілених електронних пар, і порожніх орбіталей.

Таким чином, єдина валентність, яку може виявляти атом водню, дорівнює I.

Валентні можливості атома вуглецю

Розглянемо електронну будову атома вуглецю. В основному стані електронна конфігурація його зовнішнього рівня виглядає так:

Тобто. в основному стані на зовнішньому енергетичному рівні незбудженого атома вуглецю знаходиться 2 неспарені електрони. У такому стані він може виявляти валентність, що дорівнює II. Однак атом вуглецю дуже легко переходить у збуджений стан при повідомленні йому енергії, і електронна конфігурація зовнішнього шару в цьому випадку набуває вигляду:

Незважаючи на те, що на процес збудження атома вуглецю витрачається деяка кількість енергії, витрати з надлишком компенсуються при утворенні чотирьох ковалентних зв'язків. Тому валентність IV набагато більш характерна для атома вуглецю. Так, наприклад, валентність IV вуглець має на молекулах вуглекислого газу, вугільної кислоти і всіх органічних речовин.

Крім неспарених електронів та неподілених електронних пар на валентні можливості також впливає наявність вакантних () орбіталей валентного рівня. Наявність таких орбіталей на рівні, що заповнюється призводить до того, що атом може виконувати роль акцептора електронної пари, тобто. утворювати додаткові ковалентні зв'язки за донорно-акцепторним механізмом. Так, наприклад, всупереч очікуванням, у молекулі чадного газу CO зв'язок не подвійний, а потрійний, що наочно показано на наступній ілюстрації:

Валентні можливості атома азоту

Запишемо електронно-графічну формулу зовнішнього енергетичного рівня атома азоту:

Як видно з ілюстрації вище, атом азоту у своєму звичайному стані має 3 неспарені електрони, у зв'язку з чим логічно припустити про його здатність виявляти валентність, рівну III. Дійсно, валентність, що дорівнює трьом, спостерігається в молекулах аміаку (NH 3), азотистої кислоти (HNO 2), трихлористого азоту (NCl 3) і т.д.

Вище було сказано, що валентність атома хімічного елемента залежить від кількості неспарених електронів, а й від наявності неподілених електронних пар. Пов'язано це з тим, що ковалентний хімічний зв'язок може утворитися не тільки, коли два атоми надають один одному по одному електрону, але також і тоді, коли один атом, що має неподілену пару електронів — донор() надає її іншому атому з вакантною орбіталлю () валентного рівня (акцептор). Тобто. для атома азоту можлива також валентність IV за рахунок додаткового ковалентного зв'язку, утвореного за донорно-акцепторним механізмом. Так, наприклад, чотири ковалентні зв'язки, одна з яких утворена за донорно-акцепторним механізмом, спостерігається при утворенні катіону амонію:

Незважаючи на те, що один з ковалентних зв'язків утворюється за донорно-акцепторним механізмом, всі зв'язки N-H в катіоні амонію абсолютно ідентичні і нічим один від одного не відрізняються.

Валентність, що дорівнює V, атом азоту виявляти не здатний. Пов'язано це з тим, що для атома азоту неможливий перехід у збуджений стан, при якому відбувається розпарювання двох електронів з переходом одного з них на вільну орбіталь, найближчу за рівнем енергії. Атом азоту не має d-підрівня, а перехід на 3s-орбіталь енергетично настільки витратний, що витрати енергії не покриваються утворенням нових зв'язків. Багато хто може поставити питання, а яка ж тоді валентність у азоту, наприклад, в молекулах азотної кислоти HNO 3 або оксиду азоту N 2 O 5 ? Як не дивно, валентність там теж IV, що видно з наведених нижче структурних формул:

Пунктирною лінією на ілюстрації зображено так звану справакалізована π -зв'язок. Тому кінцеві зв'язки NO можна назвати «полуторними». Аналогічні полуторні зв'язки є також молекулі озону O 3 , бензолу C 6 H 6 тощо.

Валентні можливості фосфору

Зобразимо електронно-графічну формулу зовнішнього енергетичного рівня атома фосфору:

Як бачимо, будова зовнішнього шару в атома фосфору переважно стані і атома азоту однаково, у зв'язку з чим логічно очікувати атома фосфору як і, як й у атома азоту, можливих валентностей, рівних I, II, III і IV, як і спостерігається практично.

Однак, на відміну від азоту, атом фосфору має на зовнішньому енергетичному рівні ще й d-підрівень з 5-ма вакантними орбіталями.

У зв'язку з цим він здатний переходити в збуджений стан, розпарюючи електрони 3 s-орбіталі:

Таким чином, недоступна азоту валентність V для атома фосфору можлива. Так, наприклад, валентність, що дорівнює п'яти, атом фосфору має в молекулах таких сполук, як фосфорна кислота, галогеніди фосфору (V), оксид фосфору (V) і т.д.

Валентні можливості атома кисню

Електронно-графічна формула зовнішнього енергетичного рівня атома кисню має вигляд:

Ми бачимо на 2-му рівні два неспарені електрони, у зв'язку з чим для кисню можлива валентність II. Слід зазначити, що ця валентність атома кисню спостерігається практично у всіх сполуках. Вище під час розгляду валентних можливостей атома вуглецю ми обговорили утворення молекули чадного газу. Зв'язок у молекулі CO потрійний, отже, кисень там тривалентний (кисень — донор електронної пари).

Через те, що атом кисню не має на зовнішньому рівні d-підрівня, розпарювання електронів sі p-орбіталей неможливо, через що валентні можливості атома кисню обмежені порівняно з іншими елементами його підгрупи, наприклад сіркою.

Валентні можливості атома сірки

Зовнішній енергетичний рівень атома сірки у незбудженому стані:

У атома сірки, як і в атома кисню, у звичайному стані два неспарені електрони, тому ми можемо зробити висновок про те, що для сірки можлива валентність, що дорівнює двом. І справді, валентність II сірка має, наприклад, в молекулі сірководню H 2 S.

Як бачимо, у атома сірки зовнішньому рівні з'являється d-підрівень із вакантними орбіталями. Тому атом сірки здатний розширювати свої валентні можливості на відміну від кисню за рахунок переходу в збуджені стани. Так, при розпаруванні неподіленої електронної пари 3 p-підрівня атом сірки набуває електронної конфігурації зовнішнього рівня наступного виду:

У такому стані атом сірки має 4 неспарені електрони, що говорить нам про можливість прояву атомами сірки валентності, що дорівнює IV. Дійсно, валентність IV сірка має молекулах SO 2 , SF 4 , SOCl 2 і т.д.

При розпарюванні другої неподіленої електронної пари, розташованої на 3 s-підрівні, зовнішній енергетичний рівень набуває конфігурації:

У такому стані стає можливим прояв валентності VI. Прикладом сполук з VI-валентною сіркою є SO 3 H 2 SO 4 SO 2 Cl 2 і т.д.

Аналогічно можна розглянути валентні можливості решти хімічних елементів.

Ступені окислення елементів. Як визначити ступеня окиснення?

1) У простій речовині ступінь окислення будь-якого елемента дорівнює 0. Приклади: Na 0 , H 0 2 , P 0 4 .

2) Необхідно запам'ятати елементи, котрим характерні постійні ступеня окислення. Усі вони перелічені у таблиці.


3) Пошук ступенів окислення інших елементів заснований на простому правилі:

У нейтральній молекулі сума ступенів окислення всіх елементів дорівнює нулю, а іоні - заряду іона.


Розглянемо застосування цього правила на простих прикладах.

Приклад 1. Необхідно знайти ступеня окиснення елементів в аміаку (NH 3).

Рішення. Ми вже знаємо (див. 2), що ст. бл. водню дорівнює +1. Залишилося знайти цю характеристику азоту. Нехай х – шуканий ступінь окислення. Складаємо найпростіше рівняння: х + 3*(+1) = 0. Рішення очевидне: х = -3. Відповідь: N-3 H3+1.


Приклад 2. Вкажіть ступінь окислення всіх атомів у молекулі H 2 SO 4 .

Рішення. Ступені окислення водню та кисню вже відомі: H(+1) та O(-2). Складаємо рівняння для визначення ступеня окислення сірки: 2*(+1) + х + 4*(-2) = 0. Вирішуючи дане рівняння, знаходимо: х = +6. Відповідь: H+12S+6O-24.


Приклад 3. Розрахуйте ступені окислення всіх елементів у молекулі Al(NO 3) 3 .

Рішення. Алгоритм залишається незмінним. До складу "молекули" нітрату алюмінію входить один атом Al(+3), 9 атомів кисню (-2) та 3 атоми азоту, ступінь окислення якого нам і належить обчислити. Відповідне рівняння: 1*(+3) + 3х + 9*(-2) = 0. Відповідь: Al +3 (N +5 O -2 3) 3 .


Приклад 4. Визначте ступеня окиснення всіх атомів в іоні (AsO 4) 3- .

Рішення. В даному випадку сума ступенів окислення дорівнюватиме вже не нулю, а заряду іона, тобто, -3. Рівняння: х + 4 * (-2) = -3. Відповідь: As(+5), O(-2).


А чи можна визначити ступеня окиснення відразу кількох елементів, користуючись схожим рівнянням? Якщо розглядати це завдання з погляду математики, відповідь буде негативною. Лінійне рівняння із двома змінними не може мати однозначного рішення. Але ми вирішуємо не просто рівняння!

Приклад 5. Визначте ступеня окислення всіх елементів (NH 4) 2 SO 4 .

Рішення. Ступені окислення водню та кисню відомі, сірки та азоту – ні. Класичний приклад завдання із двома невідомими! Розглянемо сульфат амонію не як єдину "молекулу", а як об'єднання двох іонів: NH 4 + і SO 4 2- . Заряди іонів нам відомі, у кожному міститься лише один атом з невідомим ступенем окислення. Користуючись досвідом, набутим під час вирішення попередніх завдань, легко знаходимо ступеня окислення азоту та сірки. Відповідь: (N -3 H 4 +1) 2 S +6 O 4 -2.

Висновок: якщо молекула містить кілька атомів з невідомими ступенями окислення, спробуйте "розділити" молекулу на кілька частин.


Приклад 6. Вкажіть ступінь окислення всіх елементів у CH 3 CH 2 OH.

Рішення. Знаходження ступенів окислення в органічних сполук має свою специфіку. Зокрема, необхідно окремо знаходити ступеня окиснення для кожного атома вуглецю. Розмірковувати можна так. Розглянемо, наприклад, атом вуглецю у складі метильної групи. Даний атом З'єднаний з 3 атомами водню та сусіднім атомом вуглецю. У зв'язку з-Н відбувається зміщення електронної щільності у бік атома вуглецю (т. до. електронегативність З перевищує ЕО водню). Якби це усунення було повним, атом вуглецю придбав заряд -3.

Атом С у складі групи -СН 2 ВІН пов'язаний з двома атомами водню (зміщення електронної щільності у бік С), одним атомом кисню (зміщення електронної щільності у бік О) та одним атомом вуглецю (можна вважати, що зміщення ел. щільності у цьому випадку не відбувається). Ступінь окислення вуглецю дорівнює -2+1+0=-1.

Відповідь: З -3 H +1 3 C -1 H +1 2 O -2 H +1.

Copyright Repetitor2000.ru, 2000-2015