Біографії Характеристики Аналіз

Умовний екстремум.

Визначення1: Кажуть, що функція має в точці локальний максимум, якщо існує така околиця точки, для якої для будь-якої точки Mз координатами (x, y)виконується нерівність: . При цьому, тобто збільшення функції< 0.

Визначення2: Кажуть, що функція має в точці локальний мінімум, якщо існує така околиця точки, для якої для будь-якої точки Mз координатами (x, y)виконується нерівність: . При цьому, тобто збільшення функції > 0.

Визначення 3: Точки локальних мінімуму та максимуму називаються точками екстремуму.

Умовні екстремуми

При відшуканні екстремумів функції багатьох змінних часто виникають завдання, пов'язані з так званим умовним екстремумом.Це можна пояснити з прикладу функції двох змінних.

Нехай задані функція та лінія Lна площині 0xy. Завдання полягає в тому, щоб на лінії Lзнайти таку точку P(x, y),в якій значення функції є найбільшим або найменшим у порівнянні зі значеннями цієї функції у точках лінії L, що знаходяться поблизу точки P. Такі точки Pназиваються точками умовного екстремумуфункції на лінії L. На відміну від звичайної точки екстремуму значення функції у точці умовного екстремуму порівнюється зі значеннями функції не у всіх точках деякої її околиці, а лише в тих, що лежать на лінії L.

Цілком ясно, що точка звичайного екстремуму (кажуть також безумовного екстремуму) є точкою умовного екстремуму для будь-якої лінії, що проходить через цю точку. Зворотне ж, зрозуміло, не так: точка умовного екстремуму може і не бути точкою звичайного екстремуму. Поясню сказане звичайним прикладом. Графіком функції є верхня напівсфера (Додаток 3 (Рис 3)).

Ця функція має максимум на початку координат; йому відповідає вершина Mпівсфери. Якщо лінія Lє пряма, що проходить через крапки Аі У(її рівняння x+y-1=0), то геометрично ясно, що для точок цієї лінії найбільше значення функції досягається в точці, що лежить посередині між точками Аі Ст.Це і є точка умовного екстремуму (максимуму) функції даної лінії; їй відповідає точка M 1 на півсфері, і з малюнка видно, що ні про який звичайний екстремум тут не може бути мови.

Зазначимо, що у заключній частині завдання знайти найбільшого і найменшого значень функції у замкнутої області нам доводиться знаходити екстремальні значення функції межі цієї області, тобто. на якійсь лінії, і тим самим вирішувати завдання умовного екстремуму.

Приступимо тепер до практичного відшукання точок умовного екстремуму функції Z = f (x, y) за умови, що змінні x і y пов'язані рівнянням (x, y) = 0. Це співвідношення називатимемо рівняння зв'язку. Якщо рівняння зв'язку y можна виразити явно через х: y=(x), ми отримаємо функцію однієї змінної Z= f(x, (x)) = Ф(х).

Знайшовши значення х, при яких ця функція досягає екстремуму, і визначивши потім рівняння зв'язку відповідні їм значення у, ми отримаємо шукані точки умовного екстремуму.

Так, у наведеному вище прикладі з рівняння зв'язку x+y-1=0 маємо y=1-х. Звідси

Легко перевірити, що z досягає максимуму за х = 0,5; але тоді з рівняння зв'язку y=0,5, і ми отримуємо якраз точку P, знайдену з геометричних міркувань.

Дуже легко вирішується завдання умовний екстремум і тоді, коли рівняння зв'язку можна представити параметричними рівняннями х=х(t), y=y(t). Підставляючи вирази для х і у цю функцію, знову приходимо до завдання відшукання екстремуму функції однієї змінної.

Якщо рівняння зв'язку має складніший вигляд і не вдається ні явно висловити одну змінну через іншу, ні замінити його параметричними рівняннями, то завдання відшукання умовного екстремуму стає складнішим. Будемо, як і раніше, вважати, що у вираженні функції z=f(x, y) змінна (x, y) = 0. Повна похідна від функції z=f(x, y) дорівнює:

Де похідна y`, знайдена за правилом диференціювання неявної функції. У точках умовного екстремуму знайдена повна похідна повинна дорівнювати нулю; це дає одне рівняння, що зв'язує х та у. Оскільки вони повинні задовольняти ще й рівняння зв'язку, ми отримуємо систему двох рівнянь із двома невідомими

Перетворимо цю систему до більш зручної, записавши перше рівняння у вигляді пропорції і ввівши нову допоміжну невідому:

(Знак мінус перед поставлений для зручності). Від цих рівностей легко перейти до наступної системи:

f ` x = (x, y) + ` x (x, y) = 0, f ` y (x, y) + ` y (x, y) = 0 (*),

яка разом із рівнянням зв'язку (x, y) = 0 утворює систему трьох рівнянь з невідомими х, у в.

Ці рівняння (*) найлегше запам'ятати за допомогою наступного правила: для того, щоб знайти точки, які можуть бути точками умовного екстремуму функції

Z= f(x, y) при рівнянні зв'язку (x, y) = 0, потрібно утворити допоміжну функцію

Ф(х,у)=f(x,y)+(x,y)

Де - деяка стала, і скласти рівняння для відшукання точок екстремуму цієї функції.

Зазначена система рівнянь доставляє, зазвичай, лише необхідні умови, тобто. не кожна пара значень х і у, що задовольняє цій системі, обов'язково є точкою умовного екстремуму. Достатні умови для точок умовного екстремуму я наводити не стану; Найчастіше конкретний зміст завдання саме підказує, чим є знайдена точка. Описаний прийом розв'язання задач на умовний екстремум називається методом множників Лагранжа.

Спочатку розглянемо випадок функції двох змінних. Умовним екстремумом функції $z=f(x,y)$ у точці $M_0(x_0;y_0)$ називається екстремум цієї функції, досягнутий за умови, що змінні $x$ і $y$ в околиці цієї точки задовольняють рівняння зв'язку $\ varphi (x, y) = 0 $.

Назва «умовний» екстремум пов'язана з тим, що на змінні накладено додаткову умову $ Varphi (x, y) = 0 $. Якщо з рівняння зв'язку можна виразити одну змінну через іншу, то завдання визначення умовного екстремуму зводиться до завдання на звичайний екстремум функції однієї змінної. Наприклад, якщо з рівняння зв'язку випливає $y=\psi(x)$, то підставивши $y=\psi(x)$ $z=f(x,y)$, отримаємо функцію однієї змінної $z=f\left (x, \ psi (x) \ right) $. У загальному випадку, однак, такий метод є малопридатним, тому потрібно введення нового алгоритму.

Метод множників Лагранжа для функцій двох змінних.

Метод множників Лагранжа полягає в тому, що для відшукання умовного екстремуму складають функцію Лагранжа: $F(x,y)=f(x,y)+lambda\varphi(x,y)$ (параметр $lambda$ називають множником Лагранжа ). Необхідні умови екстремуму задаються системою рівнянь, з якої визначаються стаціонарні точки:

$$ \left \( \begin(aligned) & \frac(\partial F)(\partial x)=0;\\ & \frac(\partial F)(\partial y)=0;\\ & \varphi (x, y) = 0. \end(aligned) \right.$$

Достатньою умовою, з якої можна з'ясувати характер екстремуму, є знак $d^2 F=F_(xx)^("")dx^2+2F_(xy)^("")dxdy+F_(yy)^("" )dy^2$. Якщо стаціонарної точці $d^2F > 0$, то функція $z=f(x,y)$ має у цій точці умовний мінімум, якщо $d^2F< 0$, то условный максимум.

Є й інший спосіб визначення характеру екстремуму. З рівняння зв'язку отримуємо: $\varphi_(x)^(")dx+\varphi_(y)^(")dy=0$, $dy=-\frac(\varphi_(x)^("))(\varphi_ (y)^("))dx$, тому в будь-якій стаціонарній точці маємо:

$$d^2 F=F_(xx)^("")dx^2+2F_(xy)^("")dxdy+F_(yy)^("")dy^2=F_(xx)^( "")dx^2+2F_(xy)^("")dx\left(-\frac(\varphi_(x)^("))(\varphi_(y)^("))dx\right)+ F_(yy)^("")\left(-\frac(\varphi_(x)^("))(\varphi_(y)^("))dx\right)^2=\\ =-\frac (dx^2)(\left(\varphi_(y)^(") \right)^2)\cdot\left(-(\varphi_(y)^("))^2 F_(xx)^(" ")+2\varphi_(x)^(")\varphi_(y)^(")F_(xy)^("")-(\varphi_(x)^("))^2 F_(yy)^ ("") \right)$$

Другий помножувач (розташований у дужці) можна представити у такій формі:

Червоним кольором виділено елементи визначника $ \ left | \begin(array) (cc) F_(xx)^("") & F_(xy)^("") \\ F_(xy)^("") & F_(yy)^("") \end (array) \right|$, який є гесіаном функції Лагранжа. Якщо $H > 0$, то $d^2F< 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F >0 $, тобто. маємо умовний мінімум функції $ z = f (x, y) $.

Примітка щодо форми запису визначника $H$. показати\сховати

$$ H=-\left|\begin(array) (ccc) 0 & \varphi_(x)^(") & \varphi_(y)^(")\\ \varphi_(x)^(") & F_ (xx)^("") & F_(xy)^("") \\ \varphi_(y)^(") & F_(xy)^("") & F_(yy)^("") \ end(array) \right| $$

У цій ситуації сформульоване вище правило зміниться так: якщо $H > 0$, то функція має умовний мінімум, а при $H< 0$ получим условный максимум функции $z=f(x,y)$. При решении задач следует учитывать такие нюансы.

Алгоритм дослідження функції двох змінних на умовний екстремум

  1. Скласти функцію Лагранжа $F(x,y)=f(x,y)+lambda\varphi(x,y)$
  2. Вирішити систему $ \left \( \begin(aligned) & \frac(\partial F)(\partial x)=0;\\ & \frac(\partial F)(\partial y)=0;\\ & \ varphi (x, y) = 0. \end(aligned) \right.$
  3. Визначити характер екстремуму у кожній із знайдених у попередньому пункті стаціонарних точок. Для цього застосувати будь-який із зазначених способів:
    • Скласти визначник $H$ та з'ясувати його знак
    • З урахуванням рівняння зв'язку обчислити знак $d^2F$

Метод множників Лагранжа для функцій n змінних

Допустимо, ми маємо функцію $n$ змінних $z=f(x_1,x_2,\ldots,x_n)$ і $m$ рівнянь зв'язку ($n > m$):

$ $ \ Varphi_1 (x_1, x_2, \ ldots, x_n) = 0; \; \varphi_2(x_1,x_2,\ldots,x_n)=0,\ldots,\varphi_m(x_1,x_2,\ldots,x_n)=0.$$

Позначивши множники Лагранжа як $lambda_1, lambda_2, ldots, lambda_m $, складемо функцію Лагранжа:

$$F(x_1,x_2,\ldots,x_n,\lambda_1,\lambda_2,\ldots,\lambda_m)=f+\lambda_1\varphi_1+\lambda_2\varphi_2+\ldots+\lambda_m\varphi_m$$

Необхідні умови наявності умовного екстремуму задаються системою рівнянь, з якої знаходяться координати стаціонарних точок та значення множників Лагранжа:

$$\left\(\begin(aligned) & \frac(\partial F)(\partial x_i)=0; (i=\overline(1,n))\\ & \varphi_j=0; (j=\ overline(1,m)) \end(aligned) \right.$$

З'ясувати, умовний мінімум чи умовний максимум має функція у знайденій точці, можна, як і раніше, за допомогою символу $d^2F$. Якщо знайденої точці $d^2F > 0$, то функція має умовний мінімум, якщо $d^2F< 0$, - то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Визначник матриці $ \ left | \begin(array) (ccccc) \frac(\partial^2F)(\partial x_(1)^(2)) & \frac(\partial^2F)(\partial x_(1)\partial x_(2) ) & \frac(\partial^2F)(\partial x_(1)\partial x_(3)) &\ldots & \frac(\partial^2F)(\partial x_(1)\partial x_(n)) \\ \frac(\partial^2F)(\partial x_(2)\partial x_1) & \frac(\partial^2F)(\partial x_(2)^(2)) & \frac(\partial^2F )(\partial x_(2)\partial x_(3)) &\ldots & \frac(\partial^2F)(\partial x_(2)\partial x_(n))\\ \frac(\partial^2F )(\partial x_(3) \partial x_(1)) & \frac(\partial^2F)(\partial x_(3)\partial x_(2)) & \frac(\partial^2F)(\partial x_(3)^(2)) &\ldots & \frac(\partial^2F)(\partial x_(3)\partial x_(n))\\ \ldots & \ldots & \ldots &\ldots & \ ldots\\ \frac(\partial^2F)(\partial x_(n)\partial x_(1)) & \frac(\partial^2F)(\partial x_(n)\partial x_(2)) & \ frac(\partial^2F)(\partial x_(n)\partial x_(3)) &\ldots & \frac(\partial^2F)(\partial x_(n)^(2))\\ \end( array) \right|$, виділеної в матриці $L$ червоним, є гессиан функції Лагранжа. Використовуємо таке правило:

  • Якщо символи кутових мінорів $H_(2m+1),\; H_(2m+2),\ldots,H_(m+n)$ матриці $L$ збігаються зі знаком $(-1)^m$, то досліджувана стаціонарна точка є точкою умовного мінімуму функції $z=f(x_1,x_2 , x_3, \ ldots, x_n) $.
  • Якщо символи кутових мінорів $H_(2m+1),\; H_(2m+2),\ldots,H_(m+n)$ чергуються, причому знак мінору $H_(2m+1)$ збігається зі знаком числа $(-1)^(m+1)$, то досліджувана стаціонарна точка є точкою умовного максимуму функції $ z = f (x_1, x_2, x_3, \ ldots, x_n) $.

Приклад №1

Знайти умовний екстремум функції $z(x,y)=x+3y$ за умови $x^2+y^2=10$.

Геометрична інтерпретація цього завдання така: потрібно знайти найбільше і найменше значення аплікати площини $z=x+3y$ для точок її перетину з циліндром $x^2+y^2=10$.

Виразити одну змінну через іншу з рівняння зв'язку і підставити її у функцію $z(x,y)=x+3y$ дещо важко, тому будемо використовувати метод Лагранжа.

Позначивши $\varphi(x,y)=x^2+y^2-10$, складемо функцію Лагранжа:

$$ F(x,y)=z(x,y)+\lambda \varphi(x,y)=x+3y+\lambda(x^2+y^2-10);\\frac(\partial F)(\partial x)=1+2\lambda x; \frac(\partial F)(\partial y)=3+2\lambda y. $$

Запишемо систему рівнянь визначення стаціонарних точок функції Лагранжа:

$$ \left \( \begin(aligned) & 1+2\lambda x=0;\\ & 3+2\lambda y=0;\\ & x^2+y^2-10=0. \end (aligned) \right.$$

Якщо припустити $\lambda=0$, перше рівняння стане таким: $1=0$. Отримане протиріччя свідчить, що $lambdaneq 0$. За умови $\lambda\neq 0$ з першого та другого рівнянь маємо: $x=-\frac(1)(2\lambda)$, $y=-\frac(3)(2\lambda)$. Підставляючи отримані значення третє рівняння, отримаємо:

$$ \left(-\frac(1)(2\lambda) \right)^2+\left(-\frac(3)(2\lambda) \right)^2-10=0;\\ \frac (1) (4 lambda ^ 2) + frac (9) (4 lambda ^ 2) = 10; \lambda^2=\frac(1)(4); \left[ \begin(aligned) & \lambda_1=-\frac(1)(2);\\ & \lambda_2=\frac(1)(2). \end(aligned) \right.\\ \begin(aligned) & \lambda_1=-\frac(1)(2); \; x_1=-\frac(1)(2\lambda_1)=1; \; y_1=-\frac(3)(2\lambda_1)=3;\\ & \lambda_2=\frac(1)(2); \; x_2=-\frac(1)(2\lambda_2)=-1; \; y_2=-\frac(3)(2\lambda_2)=-3.\end(aligned) $$

Отже, система має два рішення: $ x_1 = 1; \; y_1=3;\; \lambda_1=-\frac(1)(2)$ і $x_2=-1;\; y_2=-3;\; \lambda_2=\frac(1)(2)$. З'ясуємо характер екстремуму у кожній стаціонарній точці: $M_1(1;3)$ і $M_2(-1;-3)$. І тому обчислимо визначник $H$ у кожному з точок.

$$ \varphi_(x)^(")=2x;\; \varphi_(y)^(")=2y;\; F_(xx)^("")=2\lambda;\; F_(xy)^("")=0;\; F_(yy)^("")=2\lambda. \ H = \ left | \begin(array) (ccc) 0 & \varphi_(x)^(") & \varphi_(y)^(")\\ \varphi_(x)^(") & F_(xx)^("") & F_(xy)^("") \\ \varphi_(y)^(") & F_(xy)^("") & F_(yy)^("") \end(array) \right|= \left| \begin(array) (ccc) 0 & 2x & 2y\\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end(array) \right|= 8\cdot\left| \begin(array) (ccc) 0 & x & y\ x & \lambda & 0 \\ y & 0 & \lambda \end(array) \right| $$

У точці $ M_1 (1; 3) $ отримаємо: $ H = 8 \ cdot \ left | \begin(array) (ccc) 0 & x & y\ x & \lambda & 0 \\ y & 0 & \lambda \end(array) \right|= 8\cdot\left| \begin(array) (ccc) 0 & 1 & 3\\ 1 & -1/2 & 0 \\ 3 & 0 & -1/2 \end(array) \right|=40 > 0$, тому в точці $M_1(1;3)$ функція $z(x,y)=x+3y$ має умовний максимум, $z_(\max)=z(1;3)=10$.

Аналогічно, у точці $M_2(-1;-3)$ знайдемо: $H=8\cdot\left| \begin(array) (ccc) 0 & x & y\ x & \lambda & 0 \\ y & 0 & \lambda \end(array) \right|= 8\cdot\left| \begin(array) (ccc) 0 & -1 & -3\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end(array) \right|=-40$. Оскільки $H< 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{\min}=z(-1;-3)=-10$.

Зазначу, що замість обчислення значення визначника $H$ у кожній точці набагато зручніше розкрити його в загальному вигляді. Щоб не захаращувати текст подробицями, цей спосіб приховую під примітку.

Запис визначника $H$ у загальному вигляді. показати\сховати

$$ H=8\cdot\left|\begin(array)(ccc)0&x&y\x&\lambda&0\y&0&lambda\end(array)\right| =8\cdot\left(-\lambda(y^2)-\lambda(x^2)\right) =-8\lambda\cdot\left(y^2+x^2\right). $$

У принципі, очевидно, який знак має $H$. Оскільки жодна з точок $M_1$ або $M_2$ не збігається з початком координат, $y^2+x^2>0$. Отже, знак $H$ протилежний символу $\lambda$. Можна і довести обчислення до кінця:

$$ \begin(aligned) &H(M_1)=-8\cdot\left(-\frac(1)(2)\right)\cdot\left(3^2+1^2\right)=40;\ \ &H(M_2)=-8\cdot\frac(1)(2)\cdot\left((-3)^2+(-1)^2\right)=-40. \end(aligned) $$

Питання характер екстремуму в стаціонарних точках $M_1(1;3)$ і $M_2(-1;-3)$ можна вирішити без використання визначника $H$. Знайдемо знак $d^2F$ у кожній стаціонарній точці:

$$ d^2 F=F_(xx)^("")dx^2+2F_(xy)^("")dxdy+F_(yy)^("")dy^2=2\lambda \left( dx^2+dy^2\right) $$

Зазначу, що запис $dx^2$ означає саме $dx$, зведений на другий ступінь, тобто. $ \ left (dx \ right) ^ 2 $. Звідси маємо: $dx^2+dy^2>0$, тому при $\lambda_1=-\frac(1)(2)$ отримаємо $d^2F< 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Відповідь: у точці $(-1;-3)$ функція має умовний мінімум, $z_(\min)=-10$. У точці $(1;3)$ функція має умовний максимум, $z_(\max)=10$

Приклад №2

Знайти умовний екстремум функції $z(x,y)=3y^3+4x^2-xy$ за умови $x+y=0$.

Перший спосіб (метод множників Лагранжа)

Позначивши $\varphi(x,y)=x+y$ складемо функцію Лагранжа: $F(x,y)=z(x,y)+lambda \varphi(x,y)=3y^3+4x^2 -xy+\lambda(x+y)$.

$$ \frac(\partial F)(\partial x)=8x-y+\lambda; \; \frac(\partial F)(\partial y) = 9y^2-x+\lambda.\\ \left \( \begin(aligned) 8x-y+\lambda=0;\\ & 9y^2-x+\ lambda = 0; \ \ & x + y = 0. \end (aligned) \right.

Вирішивши систему, отримаємо: $x_1=0$, $y_1=0$, $\lambda_1=0$ і $x_2=\frac(10)(9)$, $y_2=-\frac(10)(9)$ , $ \ lambda_2 = -10 $. Маємо дві стаціонарні точки: $M_1(0;0)$ і $M_2 \left(\frac(10)(9);-\frac(10)(9) \right)$. З'ясуємо характер екстремуму у кожній стаціонарній точці з використанням визначника $H$.

$ $ H = \ left | \begin(array) (ccc) 0 & \varphi_(x)^(") & \varphi_(y)^(")\\ \varphi_(x)^(") & F_(xx)^("") & F_(xy)^("") \\ \varphi_(y)^(") & F_(xy)^("") & F_(yy)^("") \end(array) \right|= \left| \begin(array) (ccc) 0 & 1 & 1\\ 1 & 8 & -1 \\ 1 & -1 & 18y \end(array) \right|=-10-18y $$

У точці $M_1(0;0)$ $H=-10-18\cdot 0=-10< 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{\min}=0$. В точке $M_2\left(\frac{10}{9};-\frac{10}{9}\right)$ $H=10 >0$, тому у цій точці функція має умовний максимум, $z_(\max)=\frac(500)(243)$.

Досліджуємо характер екстремуму в кожній з точок іншим способом, ґрунтуючись на знаку $d^2F$:

$$ d^2 F=F_(xx)^("")dx^2+2F_(xy)^("")dxdy+F_(yy)^("")dy^2=8dx^2-2dxdy+ 18ydy^2 $$

З рівняння зв'язку $x+y=0$ маємо: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$ d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2 $$

Оскільки $ d^2F \Bigr|_(M_1)=10 dx^2 > 0$, то $M_1(0;0)$ є точкою умовного мінімуму функції $z(x,y)=3y^3+4x^ 2-xy $. Аналогічно $d^2F \Bigr|_(M_2)=-10 dx^2< 0$, т.е. $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$ - точка условного максимума.

Другий спосіб

З рівняння зв'язку $x+y=0$ отримаємо $y=-x$. Підставивши $y=-x$ у функцію $z(x,y)=3y^3+4x^2-xy$, отримаємо деяку функцію змінної $x$. Позначимо цю функцію як $u(x)$:

$$u(x)=z(x,-x)=3cdot(-x)^3+4x^2-xcdot(-x)=-3x^3+5x^2. $$

Таким чином, задачу про знаходження умовного екстремуму функції двох змінних ми звели до завдання визначення екстремуму функції однієї змінної.

$$ u_(x)^(")=-9x^2+10x;\ -9x^2+10x=0; \;x\cdot(-9x+10)=0;\\ x_1=0; \\ y_1=-x_1=0;\\x_2=\frac(10)(9);\;y_2=-x_2=-\frac(10)(9).

Отримали точки $M_1(0;0)$ і $M_2\left(\frac(10)(9); -\frac(10)(9)\right)$. Подальше дослідження відоме з курсу диференціального обчислення функцій однією зміною. Досліджуючи знак $u_(xx)^("")$ у кожній стаціонарній точці або перевіряючи зміну знака $u_(x)^(")$ у знайдених точках, отримаємо ті самі висновки, що і при вирішенні першим способом. Наприклад, перевіримо знак $u_(xx)^("")$:

$$u_(xx)^("")=-18x+10;\u_(xx)^("")(M_1)=10;\;u_(xx)^("")(M_2)=- 10.$$

Оскільки $u_(xx)^("")(M_1)>0$, то $M_1$ - точка мінімуму функції $u(x)$, у своїй $u_(\min)=u(0)=0$ . Оскільки $u_(xx)^("")(M_2)<0$, то $M_2$ - точка максимума функции $u(x)$, причём $u_{\max}=u\left(\frac{10}{9}\right)=\frac{500}{243}$.

Значення функції $u(x)$ за заданої умови зв'язку збігаються зі значеннями функції $z(x,y)$, тобто. знайдені екстремуми функції $u(x)$ і є умовні екстремуми функції $z(x,y)$, що шукаються.

Відповідь: у точці $(0;0)$ функція має умовний мінімум, $z_(\min)=0$. У точці $\left(\frac(10)(9); -\frac(10)(9) \right)$ функція має умовний максимум, $z_(\max)=\frac(500)(243)$.

Розглянемо ще один приклад, у якому характер екстремуму з'ясуємо у вигляді визначення знака $d^2F$.

Приклад №3

Знайти найбільше та найменше значення функції $z=5xy-4$, якщо змінні $x$ і $y$ позитивні та задовольняють рівняння зв'язку $\frac(x^2)(8)+\frac(y^2)(2) -1 = 0 $.

Складемо функцію Лагранжа: $ F = 5xy-4 + lambda \ left (\ frac (x ^ 2) (8) + frac (y ^ 2) (2) -1 \ right) $. Знайдемо стаціонарні точки функції Лагранжа:

$$ F_(x)^(")=5y+\frac(\lambda x)(4); \; F_(y)^(")=5x+\lambda y.\\ \left \( \begin(aligned) & 5y+\frac(\lambda x)(4)=0;\ & 5x+\lambda y=0;\\ & \frac(x^2)(8)+\frac(y^2)(2)- 1 = 0; \ \ & x > 0; \;y > 0. \end(aligned) \right.$$

Усі подальші перетворення здійснюються з урахуванням $x>0; \; y > 0$ (це обумовлено за умови завдання). З другого рівняння виразимо $\lambda=-\frac(5x)(y)$ і підставимо знайдене значення в перше рівняння: $5y-\frac(5x)(y)\cdot \frac(x)(4)=0$ , $4y^2-x^2=0$, $x=2y$. Підставляючи $x=2y$ у третє рівняння, отримаємо: $\frac(4y^2)(8)+\frac(y^2)(2)-1=0$, $y^2=1$, $y = 1 $.

Оскільки $y=1$, то $x=2$, $\lambda=-10$. Характер екстремуму у точці $(2;1)$ визначимо, з знаку $d^2F$.

$$ F_(xx)^("")=\frac(\lambda)(4); \; F_(xy)^("")=5; \; F_(yy)^("")=\lambda. $$

Оскільки $\frac(x^2)(8)+\frac(y^2)(2)-1=0$, то:

$$ d\left(\frac(x^2)(8)+\frac(y^2)(2)-1\right)=0; \; d\left(\frac(x^2)(8) \right)+d\left(\frac(y^2)(2) \right)=0; \; \frac(x)(4)dx+ydy=0; \; dy=-\frac(xdx)(4y). $$

В принципі, тут можна відразу підставити координати стаціонарної точки $x=2$, $y=1$ та параметра $\lambda=-10$, отримавши при цьому:

$$ F_(xx)^("")=\frac(-5)(2); \; F_(xy)^("")=-10; \; dy=-\frac(dx)(2).\\d^2 F=F_(xx)^("")dx^2+2F_(xy)^("")dxdy+F_(yy)^(" ")dy^2=-\frac(5)(2)dx^2+10dx\cdot \left(-\frac(dx)(2) \right)-10\cdot \left(-\frac(dx) (2) \right)^2=\\ =-\frac(5)(2)dx^2-5dx^2-\frac(5)(2)dx^2=-10dx^2. $$

Однак в інших завданнях на умовний екстремум стаціонарних точок може бути декілька. У таких випадках краще $d^2F$ уявити в загальному вигляді, а потім підставляти в отриманий вираз координати кожної зі знайдених стаціонарних точок:

$$ d^2 F=F_(xx)^("")dx^2+2F_(xy)^("")dxdy+F_(yy)^("")dy^2=\frac(\lambda) (4)dx^2+10\cdot dx\cdot \frac(-xdx)(4y) +\lambda\cdot \left(-\frac(xdx)(4y) \right)^2=\\=\frac (\lambda)(4)dx^2-\frac(5x)(2y)dx^2+\lambda \cdot \frac(x^2dx^2)(16y^2)=\left(\frac(\lambda) )(4)-\frac(5x)(2y)+\frac(\lambda \cdot x^2)(16y^2) \right)\cdot dx^2 $$

Підставляючи $x=2$, $y=1$, $\lambda=-10$, отримаємо:

$$ d^2 F=\left(\frac(-10)(4)-\frac(10)(2)-\frac(10 \cdot 4)(16) \right)\cdot dx^2=- 10dx^2. $$

Оскільки $d^2F=-10\cdot dx^2< 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{\max}=10-4=6$.

Відповідь: у точці $(2;1)$ функція має умовний максимум, $z_(\max)=6$.

У наступній частині розглянемо застосування методу Лагранжа для функцій більшої кількості змінних.

приклад

Знайти екстремум функції за умови, що хі упов'язані співвідношенням: . Геометрично завдання означає таке: на еліпсі
площиною
.

Це завдання можна вирішувати так: із рівняння
знаходимо
х:


за умови, що
, звелася до завдання знаходження екстремуму функції однієї змінної, на відрізку
.

Геометрично завдання означає таке: на еліпсі отриманому при перетині циліндра
площиною
, потрібно знайти максимальне або мінімальне значення аплікати (Рис.9). Це завдання можна вирішувати так: із рівняння
знаходимо
. Підставляючи знайдене значення у рівняння площини, отримуємо функцію однієї змінної х:

Тим самим завдання про знаходження екстремуму функції
за умови, що
, Звелася до завдання знаходження екстремуму функції однієї змінної, на відрізку.

Отже, завдання відшукання умовного екстремуму- Це завдання про знаходження екстремуму цільової функції
, за умови, що змінні хі упідкоряються обмеженню
званого рівнянням зв'язку.

Говоритимемо, що крапка
, що задовольняє рівняння зв'язку, є точкою локального умовного максимуму (мінімуму), якщо існує околиця
така, що для будь-яких точок
координати яких задовольняють рівняння зв'язку, виконано нерівність.

Якщо з рівняння зв'язку можна знайти вираз для у, то, підставляючи цей вираз на вихідну функцію, перетворюємо останню на складну функцію однієї змінної х.

Загальним методом вирішення завдання на умовний екстремум є метод множників Лагранжа. Складемо допоміжну функцію, де ─ деяке число. Ця функція називається функцією Лагранжа, а ─ множником Лагранжа. Таким чином, завдання знаходження умовного екстремуму звелося знайти точки локального екстремуму для функції Лагранжа. Для знаходження точок можливого екстремуму треба вирішити систему з 3-х рівнянь із трьома невідомими х, ув.

Потім слід скористатися наступною достатньою умовою екстремуму.

ТЕОРЕМА. Нехай точка є точкою можливого екстремуму функції Лагранжа. Припустимо, що в околиці точки
існують безперервні приватні похідні другого порядку функцій і . Позначимо

Тоді, якщо
, то
─ точка умовного екстремуму функції
при рівнянні зв'язку
при цьому, якщо
, то
─ точка умовного мінімуму, якщо
, то
─ точка умовного максимуму.

§8. Градієнт та похідна за напрямком

Нехай функція
визначена у деякій (відкритій) області. Розглянемо будь-яку точку
цій галузі та будь-яку спрямовану пряму (вісь) , що проходить через цю точку (рис. 1). Нехай
- Яка-небудь інша точка цієї осі,
- Довжина відрізка між
і
, взята зі знаком «плюс», якщо напрямок
збігається з напрямком осі , та зі знаком «мінус», якщо їхні напрямки протилежні.

Нехай
необмежено наближається до
. Межа

називається похідною від функції
у напрямку
(або вздовж осі ) і позначається так:

.

Ця похідна характеризує швидкість зміни функції в точці
у напрямку . Зокрема, і звичайні приватні похідні ,також можна розглядати як похідні «у напрямку».

Припустимо тепер, що функція
має у аналізованої області безперервні приватні похідні. Нехай вісь утворює з осями координат кути
і . При зроблених припущеннях похідна за напрямом існує і виражається формулою

.

Якщо вектор
заданий своїми координатами
, то похідну функції
за напрямом вектора
можна обчислити за такою формулою:

.

Вектор з координатами
називається вектор-градієнтфункції
у точці
. Вектор-градієнт вказує напрямок найшвидшого зростання функції в даній точці.

приклад

Дана функція , точка A(1, 1) та вектор
. Знайти: 1) grad z у точці A; 2) похідну в точці A у напрямку вектора .

Приватні похідні цієї функції у точці
:

;
.

Тоді вектор-градієнт функції у цій точці:
. Вектор-градієнт ще можна записати за допомогою розкладання векторів і :

. Похідна функції за напрямом вектора :

Отже,
,
.◄

Необхідні й достатні умови екстремуму функцій двох змінних.Точка називається точкою мінімуму (максимуму) функції якщо у певній околиці точки функція визначена і задовольняє нерівності (відповідно Точки максимуму та мінімуму називаються точками екстремуму функції).

Необхідна умова екстремуму. Якщо точці екстремуму функція має перші приватні похідні, всі вони звертаються у цій точці нанівець. Звідси випливає, що для відшукання точок екстремуму такої функції слід вирішити систему рівнянь точки, координати яких задовольняють цій системі, називаються критичними точками функції. Серед них можуть бути точки максимуму, точки мінімуму, а також точки, які не є точками екстремуму.

Достатні умови екстремуму використовуються виділення точок екстремуму з безлічі критичних точок і наведені нижче.

Нехай функція має у критичній точці безперервні другі приватні похідні. Якщо у цій точці виконується

умова то вона є точкою мінімуму при і точкою максимуму при Якщо в критичній точці вона не є точкою екстремуму. Що стосується потрібно більш тонке дослідження характеру критичної точки, яка у разі може бути точкою екстремуму, і може й бути такий.

Екстремуми функцій трьох змінних.У разі функції трьох змінних визначення точок екстремуму дослівно повторюють відповідні визначення функції двох змінних. Обмежимося викладом порядку вивчення функції на екстремум. Вирішуючи систему рівнянь слід знайти критичні точки функції, а потім у кожній із критичних точок обчислити величини

Якщо всі три величини позитивні, то критична точка, що розглядається, є точкою мінімуму; якщо дана критична точка є точкою максимуму.

Умовний екстремум функції двох змінних.Точка називається точкою умовного мінімуму (максимуму) функції за умови, якщо існує околиця точки в якій функція визначена і в якій (відповідно) для всіх точок координати яких задовольняють рівнянню

Для знаходження точок умовного екстремуму використовують функцію Лагранжа

де число називається множником Лагранжа. Вирішуючи систему трьох рівнянь

знаходять критичні точки функції Лагранжа (і навіть значення допоміжного множника Л). У цих критичних точках може бути умовний екстремум. Наведена система дає лише необхідні умови екстремуму, але не достатні: їй можуть задовольняти координати точок, які не є точками умовного екстремуму. Проте, з суті завдання, часто вдається встановити характер критичної точки.

Умовний екстремум функції багатьох змінних.Розглянемо функцію змінних за умови, що пов'язані рівняннями