Біографії Характеристики Аналіз

Складання логарифмів з однаковою основою. Що таке логарифм? Рішення логарифмів

Логарифм числа b (b > 0) на підставі a (a > 0, a ≠ 1)- Показник ступеня, в який потрібно звести число a, щоб отримати b.

Логарифм числа b на підставі 10 можна записати як lg(b), а логарифм на основі e (натуральний логарифм) – ln(b).

Часто використовується при вирішенні задач з логарифмами:

Властивості логарифмів

Існує чотири основні властивості логарифмів.

Нехай a > 0, a ≠ 1, x > 0 та y > 0.

Властивість 1. Логарифм твору

Логарифм твору дорівнює сумілогарифмів:

log a (x ⋅ y) = log a x + log a y

Властивість 2. Логарифм приватного

Логарифм приватногодорівнює різниці логарифмів:

log a (x / y) = log a x - log a y

Властивість 3. Логарифм ступеня

Логарифм ступеня дорівнює творуступеня на логарифм:

Якщо ступеня знаходиться основа логарифму, то діє інша формула:

Властивість 4. Логарифм кореня

Даною властивість можна отримати з властивості логарифм ступеня, так як корінь n-ого ступеня дорівнює ступеню 1/n:

Формула переходу від логарифму в одній підставі до логарифму при іншій основі

Ця формула також часто застосовується при вирішенні різних завдань на логарифми:

Окремий випадок:

Порівняння логарифмів (нерівності)

Нехай у нас є 2 функції f(x) та g(x) під логарифмами з однаковими основами і між ними стоїть знак нерівності:

Щоб їх порівняти, потрібно спочатку подивитися на основу логарифмів a:

  • Якщо a > 0, то f(x) > g(x) > 0
  • Якщо 0< a < 1, то 0 < f(x) < g(x)

Як вирішувати задачі з логарифмами: приклади

Завдання з логарифмамивключені до складу ЄДІ з математики для 11 класу у завданні 5 та завданні 7, ви можете знайти завдання з рішеннями на нашому сайті у відповідних розділах. Також завдання з логарифмами зустрічаються у банку завдань з математики. Всі приклади можна знайти через пошук по сайту.

Що таке логарифм

Логарифми завжди вважалися складною темоюв шкільному курсіматематики. існує багато різних визначеньлогарифма, але більшість підручників чомусь використовують найскладніші та найневдаліші з них.

Ми ж визначимо логарифм просто та наочно. Для цього складемо таблицю:

Отже, маємо ступеня двійки.

Логарифми – властивості, формули, як вирішувати

Якщо взяти число з нижнього рядка, можна легко знайти ступінь, у якому доведеться звести двійку, щоб вийшло це число. Наприклад, щоб отримати 16, треба два звести до четвертого ступеня. А щоб отримати 64, треба два звести на шостий ступінь. Це видно з таблиці.

А тепер – власне, визначення логарифму:

на підставі a від аргументу x - це ступінь, у якому треба звести число a, щоб отримати число x.

Позначення: log a x = b, де a - основа, x - аргумент, b - власне, чому дорівнює логарифм.

Наприклад, 2 3 = 8 ⇒log 2 8 = 3 (логарифм на підставі 2 від числа 8 дорівнює трьом, оскільки 2 3 = 8). З тим самим успіхом log 2 64 = 6, оскільки 2 6 = 64.

Операцію знаходження логарифму числа за заданою основою називають. Отже, доповнимо нашу таблицю новим рядком:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

На жаль, не всі логарифми вважаються так легко. Наприклад, спробуйте знайти log 2 5. Числа 5 немає в таблиці, але логіка підказує, що логарифм лежатиме десь на відрізку . Тому що 2 2< 5 < 2 3 , а чем більше ступіньдвійки, тим більше вийде число.

Такі числа називаються ірраціональними: цифри після коми можна писати нескінченно, і вони ніколи не повторюються. Якщо логарифм виходить ірраціональним, його краще і залишити: log 2 5, log 3 8, log 5 100.

Важливо розуміти, що логарифм - це вираз із двома змінними (підстава та аргумент). Багато хто спочатку плутає, де знаходиться підстава, а де - аргумент. Щоб уникнути прикрих непорозумінь, просто погляньте на картинку:

Перед нами - не що інше як визначення логарифму. Згадайте: логарифм – це ступінь, В яку треба звести підставу, щоб отримати аргумент. Саме основа зводиться у ступінь - на картинці воно виділено червоним. Виходить, що основа завжди знаходиться внизу! Це чудове правило я розповідаю своїм учням на першому ж занятті – і жодної плутанини не виникає.

Як рахувати логарифми

З визначенням розібралися - залишилося навчитися рахувати логарифми, тобто. позбавлятися знаку «log». Для початку зазначимо, що з визначення випливає два важливі факти:

  1. Аргумент і основа завжди повинні бути більше нуля. Це випливає з визначення ступеня раціональним показником, До якого зводиться визначення логарифму.
  2. Підстава повинна бути відмінною від одиниці, оскільки одиниця в будь-якій мірі все одно залишається одиницею. Через це питання «у яку міру треба звести одиницю, щоб отримати двійку» позбавлене сенсу. Немає такої міри!

Такі обмеження називаються областю допустимих значень (ОДЗ). Виходить, що ОДЗ логарифму має такий вигляд: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Зауважте, що жодних обмежень на число b (значення логарифму) не накладається. Наприклад, логарифм може бути негативним: log 2 0,5 = −1, т.к. 0,5 = 2 −1.

Втім, зараз ми розглядаємо лише числові вирази, де знати ОДЗ логарифму не потрібно. Усі обмеження вже враховані упорядниками завдань. Але коли підуть логарифмічні рівняння та нерівності, вимоги ОДЗ стануть обов'язковими. Адже в основі та аргументі можуть стояти вельми неслабкі конструкції, які зовсім необов'язково відповідають наведеним вище обмеженням.

Тепер розглянемо загальну схемуобчислення логарифмів. Вона складається із трьох кроків:

  1. Уявити основу a і аргумент x у вигляді ступеня з мінімально можливою основою, більшою за одиницю. Принагідно краще позбутися десяткових дробів;
  2. Вирішити щодо змінної рівняння: x = a b ;
  3. Отримане число b буде відповіддю.

От і все! Якщо логарифм виявиться ірраціональним, це буде видно вже на першому етапі. Вимога, щоб основа була більше одиниці, дуже актуальна: це знижує ймовірність помилки та значно спрощує викладки. Аналогічно з десятковими дробами: якщо відразу перевести їх у звичайні, помилок буде в рази менше

Подивимося, як працює ця схема на конкретних прикладах:

Завдання. Обчисліть логарифм: log 5 25

  1. Представимо основу та аргумент як ступінь п'ятірки: 5 = 5 1 ; 25 = 5 2;
  2. Складемо і розв'яжемо рівняння:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Отримали відповідь: 2.

Завдання. Обчисліть логарифм:

Завдання. Обчисліть логарифм: log 4 64

  1. Представимо основу та аргумент як ступінь двійки: 4 = 2 2 ; 64 = 2 6;
  2. Складемо і розв'яжемо рівняння:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Отримали відповідь: 3.

Завдання. Обчисліть логарифм: log 16 1

  1. Представимо основу та аргумент як ступінь двійки: 16 = 2 4 ; 1 = 2 0;
  2. Складемо і розв'яжемо рівняння:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Отримали відповідь: 0.

Завдання. Обчисліть логарифм: log 7 14

  1. Представимо основу та аргумент як ступінь сімки: 7 = 7 1 ; 14 у вигляді ступеня сімки не представляється, оскільки 7 1< 14 < 7 2 ;
  2. З попереднього пункту випливає, що логарифм не рахується;
  3. Відповідь – без змін: log 7 14.

Невелике зауваження до останньому прикладу. Як переконатися, що число не є точним ступенем іншого числа? Дуже просто - достатньо розкласти його на прості множники. Якщо в розкладанні є хоча б два різні множники, число не є точним ступенем.

Завдання. З'ясуйте, чи є точними ступенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точний ступінь, т.к. множник лише один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не є точним ступенем, оскільки є два множники: 3 і 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точний ступінь;
35 = 7 · 5 - знову не є точним ступенем;
14 = 7 · 2 - знову не точний ступінь;

Зауважимо також, що самі прості числазавжди є точними ступенями самих себе.

Десятковий логарифм

Деякі логарифми зустрічаються настільки часто, що мають спеціальну назву та позначення.

від аргументу x - це логарифм на підставі 10, тобто. ступінь, у який треба звести число 10, щоб одержати число x. Позначення lg x.

Наприклад, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - і т.д.

Відтепер, коли у підручнику зустрічається фраза типу «Знайдіть lg 0,01», знайте: це не друкарська помилка. Це десятковий логарифм. Втім, якщо вам незвично таке позначення, його можна переписати:
lg x = log 10 x

Все, що правильне для простих логарифмів, вірно і для десяткових.

Натуральний логарифм

Існує ще один логарифм, який має власну позначку. У певному сенсі він навіть більш важливий, ніж десятковий. Мова йдепро натуральний логарифм.

від аргументу x - це логарифм на основі e, тобто. ступінь, у якому треба звести число e, щоб одержати число x. Позначення: ln x.

Багато хто спитає: що ще за число e? Це ірраціональне число, його точне значення знайти та записати неможливо. Наведу лише перші його цифри:
e = 2,718281828459 ...

Не заглиблюватимемося, що це за число і навіщо потрібно. Просто пам'ятайте, що e - основа натурального логарифму:
ln x = log e x

Отже, ln e = 1; ln e 2 = 2; ln e 16 = 16 - і т.д. З іншого боку, ln 2 – ірраціональне число. Взагалі, натуральний логарифм будь-якого раціонального числаірраціональний. Крім, очевидно, одиниці: ln 1 = 0.

Для натуральних логарифмівсправедливі всі правила, які правильні для звичайних логарифмів.

Дивіться також:

Логарифм. Властивості логарифму (ступінь логарифму).

Як уявити число у вигляді логарифму?

Використовуємо визначення логарифму.

Логарифм - це показник ступеня, в який треба звести основу, щоб отримати число, що стоїть під знаком логарифму.

Таким чином, щоб представити деяке число c у вигляді логарифму на підставі a, треба під знак логарифму поставити ступінь з тією самою основою, що й основа логарифму, а в показник ступеня записати це число c:

У вигляді логарифму можна представити абсолютно будь-яке число - позитивне, негативне, ціле, дробове, раціональне, ірраціональне:

Щоб у стресових умовах контрольної або іспиту не переплутати a та c, можна скористатися таким правилом для запам'ятовування:

те, що внизу йде вниз, те, що вгорі, йде вгору.

Наприклад, потрібно подати число 2 у вигляді логарифму на підставі 3.

У нас є два числа – 2 і 3. Ці числа – основа та показник ступеня, який ми запишемо під знак логарифму. Залишається визначити, яке з цих чисел потрібно записати вниз, в основу ступеня, а яке вгору, в показник.

Основа 3 в записі логарифму стоїть внизу, значить, коли ми представлятимемо двійку у вигляді логарифму на підставі 3, 3 також запишемо вниз, в основу.

2 стоїть вище за трійку. І в записі ступеня двійку запишемо вище за трійку, тобто, в показник ступеня:

Логарифми. Початковий рівень.

Логарифми

Логарифмом позитивного числа bна підставі a, де a > 0, a ≠ 1, називається показник ступеня, в який треба звести число a, Щоб отримати b.

Визначення логарифмуможна коротко записати так:

Ця рівність справедлива за b > 0, a > 0, a ≠ 1.Його зазвичай називають логарифмічним тотожністю.
Дія знаходження логарифму числа називають логарифмування.

Властивості логарифмів:

Логарифм твору:

Логарифм приватного від поділу:

Заміна основи логарифму:

Логарифм ступеня:

Логарифм кореня:

Логарифм зі статечним підґрунтям:





Десяткові та натуральні логарифми.

Десятичним логарифмомчисла називають логарифм цього числа на підставі 10 і пишуть   lg b
Натуральним логарифмомчисла називають логарифм цього числа на підставі e, де e- Ірраціональне число, приблизно дорівнює 2,7. При цьому пишуть ln b.

Інші нотатки з алгебри та геометрії

Основні властивості логарифмів

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати — без них не наважується жодна серйозна логарифмічна задача. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими основами: log a x та log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x + log a y = log a (x · y);
  2. log a x − log a y = log a (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний виразнавіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + Log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті побудовано багато контрольні роботи. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правилослід їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічаються у звичайних числових виразів. Оцінити, наскільки вони зручні, можна лише за рішенням логарифмічних рівняньта нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу.

У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основне логарифмічне тотожністьіноді буває єдиним можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a = 1 - це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. log a 1 = 0 - це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Що таке логарифм?

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Що таке логарифм? Як вирішувати логарифми? Ці питання багатьох випускників вводять у ступор. Традиційно тема логарифмів вважається складною, незрозумілою та страшною. Особливо – рівняння з логарифмами.

Це зовсім не так. Абсолютно! Не вірите? Добре. Зараз, за ​​якісь 10 – 20 хвилин ви:

1. Зрозумієте, що таке логарифм.

2. Навчіться вирішувати цілий клас показових рівнянь. Навіть якщо про них нічого не чули.

3. Навчіться обчислювати прості логарифми.

Причому для цього вам потрібно буде знати лише таблицю множення, та як зводиться число до ступеня...

Відчуваю, сумніваєтеся ви... Ну гаразд, засікайте час! Поїхали!

Для початку вирішіть в умі ось таке рівняння:

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Логарифмом числа N на підставі а називається показник ступеня х , в яку потрібно звести а , щоб отримати число N

За умови, що
,
,

З визначення логарифму випливає, що
, тобто.
- ця рівність є основною логарифмічною тотожністю.

Логарифми на підставі 10 називаються десятковими логарифмами. Замість
пишуть
.

Логарифми на підставі e називаються натуральними та позначаються
.

Основні властивостілогарифмів.

    Логарифм одиниці за будь-якої підстави дорівнює нулю

    Логарифм добутку дорівнює сумі логарифмів співмножників.

3) Логарифм приватного дорівнює різниці логарифмів


Множник
називається модулем переходу від логарифмів на підставі a до логарифмів на підставі b .

За допомогою властивостей 2-5 часто вдається звести логарифм складного виразу результату простих арифметичних дій над логарифмами.

Наприклад,

Такі перетворення логарифму називаються логарифмуванням. Перетворення зворотні логарифмування називаються потенціюванням.

Розділ 2. Елементи вищої математики.

1. Межі

Межею функції
є кінцеве число А, якщо при прагненні xx 0 для кожного наперед заданого
, знайдеться таке число
, що як тільки
, то
.

Функція, що має межу, відрізняється від нього на нескінченно малу величину:
, де -б.м.в., тобто.
.

приклад. Розглянемо функцію
.

При прагненні
, функція y прагне до нуля:

1.1. Основні теореми про межі.

    Межа постійної величинидорівнює цій постійній величині

.

    Межа суми (різниці) кінцевого числафункцій дорівнює сумі (різниці) меж цих функций.

    Межа добутку кінцевого числа функцій дорівнює добутку меж цих функцій.

    Межа частки двох функцій дорівнює приватній межі цих функцій, якщо межа знаменника не дорівнює нулю.

Чудові межі

,
, де

1.2. Приклади обчислення меж

Однак не всі межі обчислюються так просто. Найчастіше обчислення межі зводиться до розкриття невизначеності типу: або .

.

2. Похідна функції

Нехай ми маємо функцію
, безперервну на відрізку
.

Аргумент отримав деякий приріст
. Тоді і функція отримає збільшення
.

Значення аргументу відповідає значення функції
.

Значення аргументу
відповідає значення функції.

Отже, .

Знайдемо межу цього відношення при
. Якщо ця межа існує, то вона називається похідною цієї функції.

Визначення 3Виробної даної функції
за аргументом називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу довільним чином прагне до нуля.

Похідна функції
може бути позначена таким чином:

; ; ; .

Визначення 4Операція знаходження похідної від функції називається диференціюванням.

2.1. Механічний сенс похідної.

Розглянемо прямолінійний рух деякого твердого тіла чи матеріальної точки.

Нехай у певний момент часу точка, що рухається
знаходилась на відстані від початкового становища
.

Через деякий проміжок часу
вона перемістилася на відстань
. Ставлення =- Середня швидкістьматеріальної точки
. Знайдемо межу цього відношення, враховуючи що
.

Отже, визначення миттєвої швидкостірух матеріальної точки зводиться до знаходження похідної від шляху за часом.

2.2. Геометричне значенняпохідний

Нехай ми маємо графічно задану деяку функцію
.

Рис. 1. Геометричний зміст похідної

Якщо
, то крапка
, буде переміщатися кривою, наближаючись до точки
.

Отже
, тобто. значення похідної за даного значення аргументу чисельно дорівнює тангенсу кута утвореного дотичної в даній точці з позитивним напрямом осі
.

2.3. Таблиця основних формул диференціювання.

Ступінна функція

Показова функція

Логарифмічна функція

Тригонометрична функція

Зворотна тригонометрична функція

2.4. Правила диференціювання.

Похідна від

Похідна суми (різниці) функцій


Похідна робота двох функцій


Похідна приватного двох функцій


2.5. Похідна від складної функції.

Нехай дана функція
така, що її можна подати у вигляді

і
, де змінна є проміжним аргументом, тоді

Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу по x.

Приклад1.

Приклад2.

3. Диференціал функції.

Нехай є
, що диференціюється на деякому відрізку
і нехай у цієї функції є похідна

,

тоді можна записати

(1),

де - нескінченно мала величина,

так як при

Помножуючи всі члени рівності (1) на
маємо:

Де
- Б.М.В. вищого ладу.

Величина
називається диференціалом функції
і позначається

.

3.1. Геометричне значення диференціалу.

Нехай дана функція
.

Рис.2. Геометричний зміст диференціала.

.

Очевидно, що диференціал функції
дорівнює приросту ординати дотичної в цій точці.

3.2. Похідні та диференціали різних порядків.

Якщо є
тоді
називається першою похідною.

Похідна від першої похідної називається похідною другого порядку та записується
.

Похідний n-го порядку від функції
називається похідна (n-1)-го порядку та записується:

.

Диференціал від диференціалу функції називається другим диференціалом чи диференціалом другого порядку.

.

.

3.3 Розв'язання біологічних завдань із застосуванням диференціювання.

Задача1. Дослідження показали, що зростання колонії мікроорганізмів підпорядковується закону
, де N – чисельність мікроорганізмів (у тис.), t -Час (Дні).

б) Чи буде в цей період чисельність колонії збільшуватися чи зменшуватись?

Відповідь. Чисельність колонії збільшуватиметься.

Задача 2. Вода в озері періодично тестується контролю вмісту хвороботворних бактерій. Через t днів після тестування концентрація бактерій визначається співвідношенням

.

Коли в озері настане мінімальна концентрація бактерій і чи можна буде в ньому купатися?

РішенняФункція досягає max або min, коли її похідна дорівнює нулю.

,

Визначимо max чи min буде через 6 днів. Для цього візьмемо другу похідну.


Відповідь: Через 6 днів буде мінімальна концентрація бактерій.

основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичні властивості можна вивести шляхом математичних маніпуляцій з даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів з шкільної програмита ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складний виразз використанням ряду правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи розв'язання таких рівнянь, ми розширимо Ваші знання для іншої. важливій темі- Логарифмічні нерівності ...

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.