Биографии Характеристики Анализ

Теория распознавания образов. Методы, основанные на предположениях о классе решающих функций

И признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно или нельзя переходить улицу в данный момент.

В процессе биологической эволюции многие животные с помощью зрительного и слухового аппарата решили задачи распознавания образов достаточно хорошо. Создание искусственных систем распознавания образов остаётся сложной теоретической и технической проблемой. Необходимость в таком распознавании возникает в самых разных областях - от военного дела и систем безопасности до оцифровки всевозможных аналоговых сигналов.

Традиционно задачи распознавания образов включают в круг задач искусственного интеллекта .

Направления в распознавании образов

Можно выделить два основных направления :

  • Изучение способностей к распознованию, которыми обладают живые существа, объяснение и моделирование их;
  • Развитие теории и методов построения устройств, предназначенных для решения отдельных задач в прикладных задачах.

Формальная постановка задачи

Распознавание образов - это отнесение исходных данных к определенному классу с помощью выделения существенных признаков, характеризующих эти данные из общей массы несущественных данных.

При постановке задач распознования стараются пользоваться математическим языком, стараясь в отличии от теории искусственных нейронных сетей , где основой является получение результата путем эксперимента, заменить эксперимент логическими рассуждениями и математическими доказательствами .

Наиболее часто в задачах распознования образов рассматриваются монохромные изображения , что дает возможность рассматривать изображение как функцию на плоскости. Если рассмотреть точечное множество на плоскости T , где функция x (x ,y ) выражает в каждой точке изображения его характеристику - яркость, прозрачность, оптическую плотность, то такая функция есть формальная запись изображения.

Множество же всех возможных функций x (x ,y ) на плоскости T - есть модель множества всех изображений X . Вводя понятие сходства между образами можно поставить задачу распознавания. Конкретный вид такой постановки сильно зависит от последующих этапов при распозновании в соответствии с тем или иным подходом.

Методы распознавания образов

Для оптического распознавания образов можно применить метод перебора вида объекта под различными углами, масштабами, смещениями и т. д. Для букв нужно перебирать шрифт, свойства шрифта и т. д.

Второй подход - найти контур объекта и исследовать его свойства (связность, наличие углов и т. д.)

Еще один подход - использовать искусственные нейронные сети . Этот метод требует либо большого количества примеров задачи распознавания (с правильными ответами), либо специальной структуры нейронной сети, учитывающей специфику данной задачи.

Перцептрон как метод распознавания образов

Ф. Розенблатт вводя понятие о модели мозга , задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления - описал простейшие эксперименты по различению . Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого экперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением перцептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем перцептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  • 1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением , но включает в себя и элементы обобщения .
  • 2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения .

Перцептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых перцептрон уже накопил определенный опыт.

Примеры задач распознавания образов

  • Распознавание букв.
  • Распознавание штрих-кодов.
  • Распознавание автомобильных номеров.
  • Распознавание лиц.
  • Распознавание речи.
  • Распознавание изображений.
  • Распознавание локальных участков земной коры, в которых находятся месторождения полезных ископаемых.

Программы распознавания образов

См. также

Примечания

Ссылки

  • Юрий Лифшиц. Курс «Современные задачи теоретической информатики» - лекции по статистическим методам распознавания образов, распознаванию лиц, классификации текстов
  • Journal of Pattern Recognition Research (Журнал исследования распознавания образов)

Литература

  • Дэвид А. Форсайт, Джин Понс Компьютерное зрение. Современный подход = Computer Vision: A Modern Approach. - М.: «Вильямс» , 2004. - С. 928. - ISBN 0-13-085198-1
  • Джордж Стокман, Линда Шапиро Компьютерное зрение = Computer Vision. - М.: Бином. Лаборатория знаний, 2006. - С. 752. - ISBN 5947743841
  • А.Л.Горелик, В.А.Скрипкин , Методы распознавания, М.: Высшая школа, 1989.
  • Ш.-К. Чэн , Принципы проектирования систем визуальной информации, М.: Мир, 1994.

Wikimedia Foundation . 2010 .

- в технике научно техническое направление, связанное с разработкой методов и построением систем (в т. ч. на базе ЭВМ) для установления принадлежности некоторого объекта (предмета, процесса, явления, ситуации, сигнала) к одному из заранее… … Большой Энциклопедический словарь

Одна из новых обл. кибернетики. Содержанием теории Р. о. является экстраполирование свойств объектов (образов), принадлежащих к нескольким классам, на объекты, близкие к ним в некотором смысле. Обычно при обучении автомата Р. о. имеется… … Геологическая энциклопедия

Англ. recognition, image; нем. Gestalt alterkennung. Раздел математической кибернетики, разрабатывающий принципы и методы классификации и идентификации объектов, описываемых конечным набором признаков, характеризующих их. Antinazi. Энциклопедия… … Энциклопедия социологии

Распознавание образов - метод исследования сложных объектов с помощью ЭВМ; заключается в отборе признаков и разработке алгоритмов и программ, позволяющих ЭВМ по этим признакам автоматически классифицировать объекты. Например определять, к какому… … Экономико-математический словарь

- (техн.), научно техническое направление, связанное с разработкой методов и построением систем (в том числе на базе ЭВМ) для установления принадлежности некоторого объекта (предмета, процесса, явления, ситуации, сигнала) к одному из заранее… … Энциклопедический словарь

РАСПОЗНАВАНИЕ ОБРАЗОВ - раздел математической кибернетики, разрабатывающий и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций всех тех объектов, к рые могут быть описаны конечным набором нек рых признаков или свойств,… … Российская социологическая энциклопедия

распознавание образов - 160 распознавание образов: Идентификация форм представлений и конфигураций с помощью автоматических средств

Обзор существующих методов распознавания образов

Л.П. Попова , И.О. Датьев

Способность "распознавать" считается основным свойством человеческих существ, как, впрочем, и других живых организмов. Распознавание образов - раздел кибернетики, разрабатывающий принципы и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций - всех тех объектов, которые могут быть описаны конечным набором некоторых признаков или свойств, характеризующих объект.

Образ представляет собой описание объекта. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.

В теории распознавания образов можно выделить два основных направления:

    изучение способностей к распознаванию, которыми обладают человеческие существа и другие живые организмы;

    развитие теории и методов построения устройств, предназначенных для решения отдельных задач распознавания образов в определенных прикладных областях.

Далее в статье описываются проблемы, принципы и методы реализации систем распознавания образов, связанные с развитием второго направления. Во второй части статьи рассматриваются нейросетевые методы распознавания образов, которые могут быть отнесены к первому направлению теории распознавания образов.

Проблемы построения систем распознавания образов

Задачи, возникающие при построении автоматических систем распознавания образов, можно обычно отнести к нескольким основным областям. Первая из них связана с представлением" исходных данных, полученных как результаты измерений для подлежащего распознаванию объекта. Это проблема чувствительности . Каждая измеренная величина является некоторой "характеристикой образа или объекта. Допустим, например, что образами являются буквенно-цифровые символы. B таком случае, в датчике может быть успешно использована измерительная сетчатка, подобно приведенной на рис. 1(а). Если сетчатка состоит из n-элементов, то результаты измерений можно представить в виде вектора измерений или вектора образа ,

где каждый элемент xi, принимает, например, значение 1, если через i-ю ячейку сетчатки проходит изображение символа, и значение 0 в противном случае.

Рассмотрим рис. 2(б). B этом случае образами служат непрерывные функции (типа звуковых сигналов) переменной t. Если измерение значений функций производится в дискретных точках t1,t2, ..., tn, то вектор образа можно сформировать, приняв x1= f(t1),x2=f(t2),... , xn = f(tn).

Рисунок 1. Измерительная сетчатка

Вторая проблема распознавания образов связана с выделением характерных признаков или свойств из полученных исходных данных и снижением размерности векторов образов. Эту проблему часто определяют как проблему предварительной обработки и выбора признаков .

Признаки класса образов представляют собой характерные свойства, общие для всех образов данного класса. Признаки, характеризующие различия между отдельными классами, можно интерпретировать как межклассовые признаки. Внутриклассовые признаки, общие для всех рассматриваемых классов, не несут полезной информации с точки зрения распознавания и могут не приниматься во внимание. Выбор признаков считается одной из важных задач, связанных с построением распознающих систем. Если результаты измерений позволяют получить полный набор различительных признаков для всех классов, собственно распознавание и классификация образов не вызовут особых затруднений. Автоматическое распознавание тогда сведется к процессу простого сопоставления или процедурам типа просмотра таблиц. B большинстве практических задач распознавания, однако, определение полного набора различительных признаков оказывается делом исключительно трудным, если вообще не невозможным. Из исходных данных обычно удается извлечь некоторые из различительных признаков и использовать их для упрощения процесса автоматического распознавания образов. B частности, размерность векторов измерений можно снизить с помощью преобразований, обеспечивающих минимизацию потери информации.

Третья проблема, связанная с построением систем распознавания образов, состоит в отыскании оптимальных решающих процедур, необходимых при идентификации и классификации. После того как данные, собранные о подлежащих распознаванию образах, представлены точками или векторами измерений в пространстве образов, предоставим машине выяснить, какому классу образов эти данные соответствуют. Пусть машина предназначена для различения M классов, обозначенных w1, w2, ... ..., wm. B таком случае, пространство образов можно считать состоящим из M областей, каждая из которых содержит точки, соответствующие образам из одного класса. При этом задача распознавания может рассматриваться как построение границ областей решений, разделяющих M классов, исходя из зарегистрированных векторов измерений. Пусть эти границы определены, например, решающими функциями d1(х),d2(x),..., dm(х). Эти функции, называемые также дискриминантными функциями, представляют собой скалярные и однозначные функции образа х. Если di (х) > dj (х), то образ х принадлежит классу w1. Другими словами, если i-я решающая функция di(x) имеет наибольшее значение, то содержательной иллюстрацией подобной схемы автоматической классификации, основанной на реализации процесса принятия решения, служит приведенная на рис. 2 (на схеме «ГР» - генератор решающих функций).

Рисунок 2. Схема автоматической классификации.

Решающие функции можно получать целым рядом способов. B тех случаях, когда о распознаваемых образах имеются полные априорные сведения, решающие функции могут быть определены точно на основе этой информации. Если относительно образов имеются лишь качественные сведения, могут быть выдвинуты разумные допущения о виде решающих функций. B последнем случае, границы областей решений могут существенно отклоняться от истинных, и поэтому необходимо создавать систему, способную приходить к удовлетворительному результату посредством ряда последовательных корректировок.

Объекты (образы), подлежащие распознаванию и классификации с помощью автоматической системы распознавания образов, должны обладать набором измеримых характеристик. Когда для целой группы образов результаты соответствующих измерений оказываются аналогичными, считается, что эти объекты принадлежат одному классу. Цель работы системы распознавания образов заключается в том, чтобы на основе собранной информации определить класс объектов с характеристиками, аналогичными измеренным у распознаваемых объектов. Правильность распознавания зависит от объема различающей информации, содержащейся в измеряемых характеристиках, и эффективности использования этой информации.

      Основные методы реализации систем распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты, решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о “распознавании с учителем”. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или “распознавании без учителя”. Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш , В.И. Васильев , А.Л. Горелик, В.А. Скрипкин , Р. Дуда, П. Харт , Л.Т.Кузин , Ф.И. Перегудов, Ф.П. Тарасенко , Темников Ф.Е., Афонин В.А., Дмитриев В.И. , Дж. Ту, Р. Гонсалес , П. Уинстон , К. Фу , Я.З. Цыпкин и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие – выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области.

В то же время, известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов. Д.А.Поспелов выделяет два основных способа представления знаний :

    Интенсиональное представление - в виде схемы связей между атрибутами (признаками).

    Экстенсиональное представление - с помощью конкретных фактов (объекты, примеры).

Необходимо отметить, что существование именно этих двух групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. Между этими методами существует отношение дополнительности в смысле Н.Бора , поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого–либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д.А.Поспеловым , положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер:

– методы, основанные на оценках плотностей распределения значений признаков

– методы, основанные на предположениях о классе решающих функций

– логические методы

– лингвистические (структурные) методы.

Методы, основанные на оценках плотностей распределения значений признаков. Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

К этой группе относится и метод вычисления отношения правдоподобия для независимых признаков. Этот метод, за исключением предположения о независимости признаков (которое в действительности практически никогда не выполняется), не предполагает знания функционального вида закона распределения. Его можно отнести к непараметрическим методам .

Другие непараметрические методы, применяемые тогда, когда вид кривой плотности распределения неизвестен и нельзя сделать вообще никаких предположений о ее характере, занимают особое положение. К ним относятся известные метод многомерных гистограмм, метод “k-ближайших соседей, метод евклидова расстояния, метод потенциальных функций и др., обобщением которых является метод, получивший название “оценки Парзена”. Эти методы формально оперируют объектами как целостными структурами, но в зависимости от типа задачи распознавания могут выступать и в интенсиональной и в экстенсиональной ипостасях.

Непараметрические методы анализируют относительные количества объектов, попадающих в заданные многомерные объемы, и используют различные функции расстояния между объектами обучающей выборки и распознаваемыми объектами. Для количественных признаков, когда их число много меньше объема выборки, операции с объектами играют промежуточную роль в оценке локальных плотностей распределения условных вероятностей и объекты не несут смысловой нагрузки самостоятельных информационных единиц. В то же время, когда количество признаков соизмеримо или больше числа исследуемых объектов, а признаки носят качественный или дихотомический характер, то ни о каких локальных оценках плотностей распределения вероятностей не может идти речи. В этом случае объекты в указанных непараметрических методах рассматриваются как самостоятельные информационные единицы (целостные эмпирические факты) и данные методы приобретают смысл оценок сходства и различия изучаемых объектов.

Таким образом, одни и те же технологические операции непараметрических методов в зависимости от условий задачи имеют смысл либо локальных оценок плотностей распределения вероятностей значений признаков, либо оценок сходства и различия объектов.

В контексте интенсионального представления знаний здесь рассматривается первая сторона непараметрических методов, как оценок плотностей распределения вероятностей. Многие авторы отмечают, что на практике непараметрические методы типа оценок Парзена работают хорошо. Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности ищется наилучшее приближение решающей функции. Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Решение этой задачи нередко достигается с помощью каких-либо градиентных алгоритмов. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации. В отличие от параметрических методов распознавания успешность применения данной группы методов не так сильно зависит от рассогласования теоретических представлений о законах распределения объектов в пространстве признаков с эмпирической реальностью. Все операции подчинены одной главной цели - нахождению экстремума функционала качества решающего правила. В то же время результаты параметрических и рассматриваемых методов могут быть похожими. Как показано выше, параметрические методы для случая нормальных распределений объектов в различных классах с равными ковариационными матрицами приводят к линейным решающим функциям. Отметим также, что алгоритмы отбора информативных признаков в линейных диагностических моделях, можно интерпретировать как частные варианты градиентных алгоритмов поиска экстремума.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами. Однако стремление добиться достаточного качества решающего правила нередко может быть удовлетворено с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму .

К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции.

Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА). В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции. В алгоритмах МГУА особым образом синтезируются и отбираются члены обобщенного полинома, который часто называют полиномом Колмогорова-Габора. Этот синтез и отбор производится с нарастающим усложнением, и заранее нельзя предугадать, какой окончательный вид будет иметь обобщенный полином. Сначала обычно рассматривают простые попарные комбинации исходных признаков, из которых составляются уравнения решающих функций, как правило, не выше второго порядка. Каждое уравнение анализируется как самостоятельная решающая функция, и по обучающей выборке тем или иным способом находятся значения параметров составленных уравнений. Затем из полученного набора решающих функций отбирается часть в некотором смысле лучших. Проверка качества отдельных решающих функций осуществляется на контрольной (проверочной) выборке, что иногда называют принципом внешнего дополнения. Отобранные частные решающие функции рассматриваются далее как промежуточные переменные, служащие исходными аргументами для аналогичного синтеза новых решающих функций и т. д. Процесс такого иерархического синтеза продолжается до тех пор, пока не будет достигнут экстремум критерия качества решающей функции, что на практике проявляется в ухудшении этого качества при попытках дальнейшего увеличения порядка членов полинома относительно исходных признаков.

Принцип самоорганизации, положенный в основу МГУА, называют эвристической самоорганизацией, так как весь процесс основывается на введении внешних дополнений, выбираемых эвристически. Результат решения может существенно зависеть от этих эвристик. От того, как разделены объекты на обучающую и проверочную выборки, как определяется критерий качества распознавания, какое количество переменных пропускается в следующий ряд селекции и т. д., зависит результирующая диагностическая модель.

Указанные особенности алгоритмов МГУА свойственны и другим подходам к эволюционному моделированию. Но отметим здесь еще одну сторону рассматриваемых методов. Это - их содержательная сущность. С помощью методов, основанных на предположениях о классе решающих функций (эволюционных и градиентных), можно строить диагностические модели высокой сложности и получать практически приемлемые результаты. В то же время достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций. Поэтому максимально, что можно сказать после построения той или иной диагностической модели - это перечислить комбинации признаков и сами признаки, вошедшие в результирующую модель. Но смысл комбинаций, отражающих природу и структуру распределений исследуемых объектов, в рамках данного подхода часто остается нераскрытым.

Логические методы . Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события.

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм “Кора” и другие. Более сложные методы основываются на формализации индуктивных методов Д.С.Милля. Формализация осуществляется путем построения квазиаксиоматической теории и базируется на многосортной многозначной логике с кванторами по кортежам переменной длины .

Алгоритм “Кора”, как и другие логические методы распознавания образов, является достаточно трудоемким, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (синтаксические или структурные) методы. Лингвистические методы распознавания образов основаны на использовании специальных грамматик порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов . Грамматикой называют правила построения объектов из этих непроизводных элементов.

Если описание образов производится с помощью непроизводных элементов (подобразов) и их отношений, то для построения автоматических систем распознавания применяется лингвистический или синтаксический подход с использованием принципа общности свойств. Образ можно описать с помощью иерархической структуры подобразов, аналогичной синтаксической структуре языка. Это обстоятельство позволяет применять при решении задач распознавания образов теорию формальных языков. Предполагается, что грамматика образов содержит конечные множества элементов, называемых переменными, непроизводными элементами и правилами подстановки. Характер правил подстановки определяет тип грамматики. Среди наиболее изученных грамматик можно отметить регулярные, бесконтекстные и грамматики непосредственно составляющих. Ключевыми моментами данного подхода являются выбор непроизводных элементов образа, объединение этих элементов и связывающих их отношений в грамматики образов и, наконец, реализация в соответствующем языке процессов анализа и распознавания. Такой подход особенно полезен при работе с образами, которые либо не могут быть описаны числовыми измерениями, либо столь сложны, что их локальные признаки идентифицировать не удается и приходится обращаться к глобальным свойствам объектов.

Например, Е.А. Бутаков, В.И. Островский, И.Л. Фадеев предлагают следующую структуру системы для обработки изображений (рис. 3), использующую лингвистический подход, где каждый из функциональных блоков является программным (микропрограммным) комплексом (модулем), реализующим соответствующие функции.

Рисунок 3. Структурная схема распознающего устройства

Попытки применить методы математической лингвистики к задаче анализа изображений приводят к необходимости решить ряд проблем, связанных с отображением двумерной структуры изображения на одномерные цепочки формального языка.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность . Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы:

    метод сравнения с прототипом;

    метод k–ближайших соседей;

    коллективы решающих правил.

Метод сравнения с прототипом. Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, тогда, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки – прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом который, фактически эквивалентен линейной диагностической модели.

На практике, конечно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы. Это, в первую очередь, выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. И, во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k-ближайших соседей. Метод k-ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году. Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k-ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k-ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

Как отмечалось выше, в реальных задачах часто приходится оперировать объектами, которые описываются большим количеством качественных (дихотомических) признаков. При этом размерность пространства признаков соизмерима или превышает объем исследуемой выборки. В таких условиях удобно интерпретировать каждый объект обучающей выборки, как отдельный линейный классификатор. Тогда тот или иной диагностический класс представляется не одним прототипом, а набором линейных классификаторов. Совокупное взаимодействие линейных классификаторов дает в итоге кусочно-линейную поверхность, разделяющую в пространстве признаков распознаваемые классы. Вид разделяющей поверхности, состоящей из кусков гиперплоскостей, может быть разнообразным и зависит от взаимного расположения классифицируемых совокупностей.

Также можно использовать другую интерпретацию механизмов классификации по правилу k-ближайших соседей. В ее основе лежит представление о существовании некоторых латентных переменных, абстрактных или связанных каким-либо преобразованием с исходным пространством признаков. Если в пространстве латентных переменных попарные расстояния между объектами такие же, как и в пространстве исходных признаков, и количество этих переменных значительно меньше числа объектов, то интерпретация метода k-ближайших соседей может рассматриваться под углом зрения сравнения непараметрических оценок плотностей распределения условных вероятностей. Приведенное здесь представление о латентных переменных близко по своей сути к представлению об истинной размерности и другим представлениям, используемым в различных методах снижения размерности.

При использовании метода k-ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Алгоритмы вычисления оценок (голосования). Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритете (оценок сходства), характеризующих “близость” распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов .

Коллективы решающих правил. В решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например, расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа “Кора” и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов .

Нейросетевые методы

Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений :

    применение для извлечение ключевых характеристик или признаков заданных образов,

    классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),

    решение оптимизационных задач.

Многослойные нейронные сети. Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего.

Простейшее применение однослойной НС (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.

МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 4). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем . Такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.

Подход к классификации с использованием частотных характеристик всего изображения, описан в . Применялась однослойная НС, основанная на многозначных нейронах.

В показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.

В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.

Рисунок 5. Главные компоненты (собственные лица) и разложение изображения на главные компоненты

НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В , показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами , которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 5). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС . Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.

Нейронные сети высокого порядка. Нейронные сети высокого порядка (НСВП) отличаются от МНС тем, что у них только один слой, но на входы нейронов поступают так же термы высокого порядка, являющиеся произведением двух или более компонент входного вектора . Такие сети так же могут формировать сложные разделяющие поверхности.

Нейронные сети Хопфилда. НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной – т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ .

Применение НСХ в качестве ассоциативной памяти позволяет точно восстанавливать образы, которым сеть обучена, при подаче на вход искажённого образа. При этом сеть “вспомнит” наиболее близкий (в смысле локального минимума энергии) образ, и таким образом распознает его. Такое функционирование так же можно представить как последовательное применение автоассоциативной памяти, описанной выше. В отличие от автоассоциативной памяти НСХ идеально точно восстановит образ. Для избежания интерференционных минимумов и повышения ёмкости сети используют различные методы .

Самоорганизующиеся нейронные сети Кохонена. Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное, m<

Когнитрон. Когнитрон своей архитектурой похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением (без учителя). Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путем моделирования организации зрительной коры.

Неокогнитрон является дальнейшим развитием идеи когнитрона и более точно отражает строение зрительной системы, позволяет распознавать образы независимо от их преобразований, вращений, искажений и изменений масштаба.

Когнитрон является мощным средством распознавания изображений, однако требует высоких вычислительных затрат, которые на сегодняшний день недостижимы .

Рассмотренные нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений, но при использовании этих методов возникают проблемы распознавания трёхмерных объектов. Тем не менее, данный подход имеет массу достоинств.

      Заключение

В настоящее время существует достаточно большое количество систем автоматического распознавания образов для различных прикладных задач.

Распознавание образов формальными методами как фундаментальное научное направление является неисчерпаемым.

Математические методы обработки изображений имеют самые разнообразные применения: наука, техника, медицина, социальная сфера. В дальнейшем роль распознавания образов в жизни человека будет возрастать еще больше.

Нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений. Данный подход имеет массу достоинств и является одним из наиболее перспективных.

Литература

    Д.В. Брилюк, В.В. Старовойтов. Нейросетевые методы распознавания изображений // /

    Кузин Л.Т. Основы кибернетики: Основы кибернетических моделей. Т.2. - М.: Энергия, 1979. - 584с.

    Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие. – М.: Высшая школа, 1997. - 389с.

    Темников Ф.Е., Афонин В.А., Дмитриев В.И. Теоретические основы информационной техники. - М.: Энергия, 1979. - 511с.

    Ту Дж., Гонсалес Р. Принципы распознавания образов. /Пер. с англ. - М.: Мир, 1978. - 410с.

    Уинстон П. Искусственный интеллект. /Пер. с англ. - М.: Мир, 1980. - 520с.

    Фу К. Структурные методы в распознавании образов: Пер.с англ. - М.: Мир, 1977. - 320с.

    Цыпкин Я.З. Основы информационной теории идентификации. - М.: Наука, 1984. - 520с.

    Поспелов Г.С. Искусственный интеллект - основа новой информационной технологии. - М.: Наука, 1988. - 280с.

    Ю. Лифшиц, Статистические методы распознавания образов ///modern/07modernnote.pdf

    Бор Н. Атомная физика и человеческое познание. /Пер.с англ. - М.: Мир, 1961. - 151с.

    Бутаков Е.А., Островский В.И., Фадеев И.Л. Обработка изображений на ЭВМ.1987.-236с.

    Дуда Р., Харт П. Распознавание образов и анализ сцен. /Пер.с англ. - М.: Мир, 1978. - 510с.

    Дюк В.А. Компьютерная психодиагностика. - СПб: Братство, 1994. - 365с.

    Aizenberg I. N., Aizenberg N. N. and Krivosheev G.A. Multi-valued and Universal Binary Neurons: Learning Algorithms, Applications to Image Processing and Recognition. Lecture Notes in Artificial Intelligence – Machine Learning and Data Mining in Pattern Recognition, 1999, pp. 21-35.

    Ranganath S. and Arun K. Face recognition using transform features and neural networks. Pattern Recognition 1997, Vol. 30, pp. 1615-1622.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями – Брест:БПИ, 1999, - 260с.

    Vetter T. and Poggio T. Linear Object Classes and Image Synthesis From a Single Example Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, Vol. 19, pp. 733-742.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 2. Самоорганизация, отказоустойчивость и применение нейронных сетей – Брест:БПИ, 1999, - 228с.

    Lawrence S., Giles C. L., Tsoi A. C. and Back A. D. Face Recognition: A Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, pp. 1-24.

    Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика, 1992 – 184с.

    Rowley H. A., Baluja S. and Kanade T. Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998, Vol. 20, pp. 23-37.

    Valentin D., Abdi H., O"Toole A. J. and Cottrell G. W. Connectionist models of face processing: a survey. IN: Pattern Recognition 1994, Vol. 27, pp. 1209-1230.

    Документ

    Им составляют алгоритмы распознавания образов . Методы распознавания образов Как отмечалось выше... реальности не существует "экосистемы вообще", а существуют только отдельные... выводы из этого детального обзора методов распознавания мы представили в...

  1. Обзор методов идентификации людей на основе изображений лиц с учетом особенностей визуального распознавания

    Обзор

    ... распознавания человеком слабоконтрастных объектов, в т.ч. лиц. Приведен обзор распространенных методов ... Существует целый ряд методов ... образом , в результате проведенного исследования подготовлена платформа для разработки метода распознавания ...

  2. Имени Глазкова Валентина Владимировна ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ ПРОГРАММНЫХ СРЕДСТВ КЛАССИФИКАЦИИ МНОГОТЕМНЫХ ГИПЕРТЕКСТОВЫХ ДОКУМЕНТОВ Специальность 05

    Автореферат диссертации

    Гипертекстовых документов. В главе приведён обзор существующих методов решения рассматриваемой задачи, описание... отсечением наименее релевантных классов // Математические методы распознавания образов : 13-я Всероссийская конференция. Ленинградская обл...

  3. Слайд 0 Обзор задач биоинформатики связанных с анализом и обработкой генетических текстов

    Лекция

    Последовательностей ДНК и белков. Обзор задач биоинформатики как задач... сигналов требует применения современных методов распознавания образов , статистических подходов и... с низкой плотностью генов. Существующие программы предсказания генов не...

Глава 3: Аналитический обзор методов распознавания образов и принятия решений

Теория распознавания образов и автоматизация управления

Основные задачи адаптивного распознавания образов

Распознавание представляет собой информационный процесс, реализуемый некоторым преобразователем информации (интеллектуальным информационным каналом, системой распознавания), имеющим вход и выход. На вход системы подается информация о том, какими признаками обладают предъявляемые объекты. На выходе системы отображается информация о том, к каким классам (обобщенным образам) отнесены распознаваемые объекты.

При создании и эксплуатации автоматизированной системы распознавания образов решается ряд задач. Рассмотрим кратко и упрощенно эти задачи. Отметим, что у различных авторов формулировки этих задач, да и сам набор не совпадают, так как он в определенной степени зависит от конкретной математической модели, на которой основана та или иная система распознавания. Кроме того, некоторые задачи в определенных моделях распознавания не имеют решения и, соответственно, не ставятся.

Задача формализации предметной области

По сути это задача является задачей кодирования. Составляется список обобщенных классов, к которым могут относиться конкретные реализации объектов, а также список признаков, которыми эти объекты в принципе могут обладать.

Задача формирования обучающей выборки

Обучающая выборка представляет собой базу данных, содержащую описания конкретных реализаций объектов на языке признаков, дополненную информацией о принадлежности этих объектов к определенным классам распознавания.

Задача обучения системы распознавания

Обучающая выборка используется для формирования обобщенных образов классов распознавания на основе обобщения информации о том, какими признаками обладают объекты обучающей выборки, относящиеся к этому классу и другим классам.

Задача снижения размерности пространства признаков

После обучения системы распознавания (получения статистики распределения частот признаков по классам) становится возможным определить для каждого признака его ценность для решения задачи распознавания. После этого наименее ценные признаки могут быть удалены из системы признаков. Затем система распознавания должна быть обучена заново, так как в результате удаления некоторых признаков статистика распределения оставшихся признаков по классам изменяется. Этот процесс может повторяться, т.е. быть итерационным.

Задача распознавания

Распознаются объекты распознаваемой выборки, которая, в частности, может состоять и из одного объекта. Распознаваемая выборка формируется аналогично обучающей, но не содержит информации о принадлежности объектов к классам, так как именно это и определяется в процессе распознавания. Результатом распознавания каждого объекта является распределение или список всех классов распознавания в порядке убывания степени сходства распознаваемого объекта с ними.

Задача контроля качества распознавания

После распознавания может быть установлена его адекватность. Для объектов обучающей выборки это может быть сделано сразу, так как для них просто известно, к каким классам они относятся. Для других объектов эта информация может быть получена позже. В любом случае может быть определена фактическая средняя вероятность ошибки по всем классам распознавания, а также вероятность ошибки при отнесении распознаваемого объекта к определенному классу.

Результаты распознавания должны интерпретироваться с учетом имеющейся информации о качестве распознавания.

Задача адаптации

Если в результате выполнения процедуры контроля качества установлено, что оно неудовлетворительное, то описания неправильно распознанных объектов могут быть скопированы из распознаваемой выборки в обучающую, дополнены адекватной классификационной информацией и использованы для переформирования решающих правил, т.е. учтены. Более того, если эти объекты не относятся к уже имеющимся классам распознавания, что и могло быть причиной их неверного распознавания, то этот список может быть расширен. В результате система распознавания адаптируется и начинает адекватно классифицировать эти объекты.

Обратная задача распознавания

Задача распознавания состоит в том, что для данного объекта по его известным признакам системой устанавливается его принадлежность к некоторому ранее неизвестному классу. В обратной задаче распознавания, наоборот, для данного класса распознавания системой устанавливается, какие признаки наиболее характерны для объектов данного класса, а какие нет (или какие объекты обучающей выборки относятся к данному классу).

Задачи кластерного и конструктивного анализа

Кластерами называются такие группы объектов, классов или признаков, что внутри каждого кластера они максимально сходны, а между разными кластерами — максимально различны.

Конструктом (в контексте, рассматриваемом в данном разделе) называется система противоположных кластеров. Таким образом, в определенном смысле конструкты есть результат кластерного анализа кластеров.

В кластерном анализе количественно измеряется степень сходства и различия объектов (классов, признаков), и эта информация используется для классификации. Результатом кластерного анализа является сама классификация объектов по кластерам. Эта классификация может быть представлена в форме семантических сетей.

Задача когнитивного анализа

В когнитивном анализе информация о сходстве и различии классов или признаков интересует исследователя сама по себе, а не для того, чтобы использовать ее для классификации, как в кластерном и конструктивном анализе.

Если для двух классов распознавания является характерным один и тот же признак, то это вносит вклад в сходство этих двух классов. Если же для одного из классов этот признак является нехарактерным, то это вносит вклад в различие.

Если два признака коррелируют друг с другом, то в определенном смысле их можно рассматривать как один признак, а если антикоррелируют, то как различные. С учетом этого обстоятельства наличие различных признаков у разных классов также вносит определенный вклад в их сходство и различие.

Результаты когнитивного анализа могут быть представлены в форме когнитивных диаграмм.

Методы распознавания образов и их характеристики

Принципы классификации методов распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о «распознавании с учителем» . В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или «распознавании без учителя». Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш , В.И. Васильев , А.Л. Горелик, В.А. Скрипкин , Р. Дуда, П. Харт , Л.Т. Кузин , Ф.И. Перегудов, Ф.П. Тарасенко , Ф.Е. Темников , Дж. Ту, Р. Гонсалес , П. Уинстон , К. Фу , Я.З. Цыпкин и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие — выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области. Например, в работе , в которой дан академический обзор методов распознавания, используется следующая типология методов распознавания образов:

  • методы, основанные на принципе разделения;
  • статистические методы;
  • методы, построенные на основе «потенциальных функций»;
  • методы вычисления оценок (голосования);
  • методы, основанные на исчислении высказываний, в частности на аппарате алгебры логики.

В основе данной классификации лежит различие в формальных методах распознавания образов и поэтому опущено рассмотрение эвристического подхода к распознаванию, получившего полное и адекватное развитие в экспертных системах. Эвристический подход основан на трудно формализуемых знаниях и интуиции исследователя. При этом исследователь сам определяет, какую информацию и каким образом система должна использовать для достижения требуемого эффекта распознавания.

Подобная типология методов распознавания с той или иной степенью детализации встречается во многих работах по распознаванию. В то же время известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов.

Д.А.Поспелов (1990) выделяет два основных способа представления знаний :

  • интенсиональное, в виде схемы связей между атрибутами (признаками).
  • экстенсиональное, с помощью конкретных фактов (объекты, примеры).

Интенсиональное представление фиксируют закономерности и связи, которыми объясняется структура данных. Применительно к диагностическим задачам такая фиксация заключается в определении операций над атрибутами (признаками) объектов, приводящих к требуемому диагностическому результату. Интенсиональные представления реализуются посредством операций над значениями атрибутов и не предполагают произведения операций над конкретными информационными фактами (объектами).

В свою очередь, экстенсиональные представления знаний связаны с описанием и фиксацией конкретных объектов из предметной области и реализуются в операциях, элементами которых служат объекты как целостные системы.

Можно провести аналогию между интенсиональными и экстенсиональными представлениями знаний и механизмами, лежащими в основе деятельности левого и правого полушарий головного мозга человека. Если для правого полушария характерна целостная прототипная репрезентация окружающего мира, то левое полушарие оперирует закономерностями, отражающими связи атрибутов этого мира .

Описанные выше два фундаментальных способа представления знаний позволяют предложить следующую классификацию методов распознавания образов:

  • интенсиональные методы, основанные на операциях с признаками.
  • экстенсиональные методы, основанные на операциях с объектами.

Необходимо особо подчеркнуть, что существование именно этих двух (и только двух) групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. По мнению авторов, между этими методами существует отношение дополнительности в смысле Н.Бора , поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого-либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д. А. Поспеловым, положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер.

Методы, основанные на оценках плотностей распределения значений признаков

Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций

В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят наилучшее приближение решающей функции . Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами.

Достаточно высокое качество решающего правила может быть достигнуто с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму. К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции. Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА) . В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции.

Однако достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций.

Логические методы

Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события .

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм «Кора» и др.

Алгоритм «Кора», как и другие логические методы распознавания образов, является достаточно трудоемким в вычислительном отношении, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (структурные) методы

Лингвистические методы распознавания образов основаны на использовании специальных грамматик, порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов .

Для различных классов объектов выделяются непроизводные (атомарные) элементы (подобразы, признаки) и возможные отношения между ними. Грамматикой называют правила построения объектов из этих непроизводных элементов.

Таким образом, каждый объект представляет собой совокупность непроизводных элементов, «соединенных» между собой теми или иными способами или, другими словами, «предложением» некоторого «языка». Хотелось бы особо подчеркнуть очень значительную мировоззренческую ценность этой мысли .

Путем синтаксического анализа (грамматического разбора) «предложения» определяется его синтаксическая «правильность» или, что эквивалентно, может ли некоторая фиксированная грамматика, описывающая класс, породить имеющееся описание объекта.

Однако задача восстановления (определения) грамматик по некоторому множеству высказываний (предложений — описаний объектов), порождающих данный язык, является трудно формализуемой.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность . Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы.

Метод сравнения с прототипом

Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, в том случае, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки — прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом, который фактически эквивалентен линейной диагностической модели.

На практике, безусловно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы.

Во-первых, это выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. Во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k ближайших соседей

Метод k ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году . Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

При использовании метода k ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Необходимость уменьшения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как уменьшает представительность обучающей выборки.

Алгоритмы вычисления оценок (»голосования»)

Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритетов (оценок сходства), характеризующих «близость» распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов .

Используемые сочетания признаков (подпространства) авторы называют опорными множествами или множествами частичных описаний объектов. Вводится понятие обобщенной близости между распознаваемым объектом и объектами обучающей выборки (с известной классификацией), которые называют эталонными объектами. Эта близость представляется комбинацией близостей распознаваемого объекта с эталонными объектами, вычисленных на множествах частичных описаний. Таким образом, АВО является расширением метода k ближайших соседей, в котором близость объектов рассматривается только в одном заданном пространстве признаков.

Еще одним расширением АВО является то, что в данных алгоритмах задача определения сходства и различия объектов формулируется как параметрическая и выделен этап настройки АВО по обучающей выборке, на котором подбираются оптимальные значения введенных параметров. Критерием качества служит ошибка распознавания, а параметризуется буквально все:

  • правила вычисления близости объектов по отдельным признакам;
  • правила вычисления близости объектов в подпространствах признаков;
  • степень важности того или иного эталонного объекта как диагностического прецедента;
  • значимость вклада каждого опорного множества признаков в итоговую оценку сходства распознаваемого объекта с каким-либо диагностическим классом.

Параметры АВО задаются в виде значений порогов и (или) как веса указанных составляющих.

Теоретические возможности АВО по крайней мере не ниже возможностей любого другого алгоритма распознавания образов, так как с помощью АВО могут быть реализованы все мыслимые операции с исследуемыми объектами.

Но, как это обычно бывает, расширение потенциальных возможностей наталкивается на большие трудности при их практическом воплощении, особенно на этапе построения (настройки) алгоритмов данного типа.

Отдельные трудности отмечались ранее при обсуждении метода k ближайших соседей, который можно было интерпретировать как усеченный вариант АВО. Его тоже можно рассматривать в параметрическом виде и свести задачу к поиску взвешенной метрики выбранного типа. В то же время уже здесь для высокоразмерных задач возникают сложные теоретические вопросы и проблемы, связанные с организацией эффективного вычислительного процесса.

Для АВО, если попытаться использовать возможности данных алгоритмов в полном объеме, указанные трудности возрастают многократно.

Отмеченные проблемы объясняют то, что на практике применение АВО для решения высокоразмерных задач сопровождается введением каких-либо эвристических ограничений и допущений. В частности, известен пример использования АВО в психодиагностике, в котором апробирована разновидность АВО, фактически эквивалентная методу k ближайших соседей.

Коллективы решающих правил

В завершение обзора методов распознавания образов остановимся еще на одном подходе. Это так называемые коллективы решающих правил (КРП) .

Так как различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке объектов, то закономерно встает вопрос о синтетическом решающем правиле, адаптивно использующем сильные стороны этих алгоритмов. В синтетическом решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа «Кора» и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов .

Сравнительный анализ методов распознавания образов

Сравним описанные выше методы распознавания образов и оценим степень их адекватности сформулированным в разделе 3.3.3 требованиям к моделям СОУ для адаптивных АСУ сложными системами.

Для решения реальных задач из группы методов интенсионального направления практическую ценность представляют параметрические методы и методы, основанные на предложениях о виде решающих функций. Параметрические методы составляют основу традиционной методологии конструирования показателей. Применение этих методов в реальных задачах связано с наложением сильных ограничений на структуру данных, которые приводят к линейным диагностическим моделям с очень приблизительными оценками их параметров. При использовании методов, основанных на предположениях о виде решающих функций, исследователь также вынужден обращаться к линейным моделям. Это обусловлено высокой размерностью пространства признаков, характерной для реальных задач, которая при повышении степени полиноминальной решающей функции дает огромный рост числа ее членов при проблематичном сопутствующем повышении качества распознавания. Таким образом, спроецировав область потенциального применения интенсиональных методов распознавания на реальную проблематику, получим картину, соответствующую хорошо отработанной традиционной методологии линейных диагностических моделей.

Свойства линейных диагностических моделей, в которых диагностический показатель представлен взвешенной суммой исходных признаков, хорошо изучены. Результаты этих моделей (при соответствующем нормировании) интерпретируются как расстояния от исследуемых объектов до некоторой гиперплоскости в пространстве признаков или, что эквивалентно, как проекции объектов на некоторую прямую линию в данном пространстве. Поэтому линейные модели адекватны только простым геометрическим конфигурациям областей пространства признаков, в которые отображаются объекты разных диагностических классов. При более сложных распределениях эти модели принципиально не могут отражать многие особенности структуры экспериментальных данных. В то же время такие особенности способны нести ценную диагностическую информацию.

Вместе с тем появление в какой-либо реальной задаче простых многомерных структур (в частности, многомерных нормальных распределений) следует скорее расценивать как исключение, чем как правило. Часто диагностические классы формируются на основе сложносоставных внешних критериев, что автоматически влечет за собой геометрическую неоднородность данных классов в пространстве признаков. Это особенно касается «жизненных», наиболее часто встречающихся на практике критериев. В таких условиях применение линейных моделей фиксирует только самые «грубые» закономерности экспериментальной информации.

Применение экстенсиональных методов не связано с каким-либо предположениями о структуре экспериментальной информации, кроме того, что внутри распознаваемых классов должны существовать одна или несколько групп чем-то похожих объектов, а объекты разных классов должны чем-то отличаться друг от друга. Очевидно, что при любой конечной размерности обучающей выборки (а другой она быть и не может) это требование выполняется всегда просто по той причине, что существуют случайные различия между объектами. В качестве мер сходства применяются различные меры близости (расстояния) объектов в пространстве признаков. Поэтому эффективное использование экстенсиональных методов распознавания образов зависит от того, насколько удачно определены указанные меры близости, а также от того, какие объекты обучающей выборки (объекты с известной классификацией) выполняют роль диагностических прецедентов. Успешное решение данных задач дает результат, приближающийся к теоретически достижимым пределам эффективности распознавания.

Достоинствам экстенсиональных методов распознавания образов противопоставлена, в первую очередь, высокая техническая сложность их практического воплощения. Для высокоразмерных пространств признаков внешне простая задача нахождения пар ближайших точек превращается в серьезную проблему. Также многие авторы отмечают в качестве проблемы необходимость запоминания достаточно большого количества объектов, представляющих распознаваемые классы.

Само по себе это не является проблемой, однако воспринимается как проблема (например, в методе k ближайших соседей) по той причине, что при распознавании каждого объекта происходит полный перебор всех объектов обучающей выборки.

Поэтому целесообразно применить модель системы распознавания, в которой проблема полного перебора объектов обучающей выборки при распознавании снимается, так как он осуществляется лишь один раз при формировании обобщенных образов классов распознавания. При самом же распознавании осуществляется сравнение идентифицируемого объекта лишь с обобщенными образами классов распознавания, количество которых фиксировано и совершенно не зависит от размерности обучающей выборки. Данный подход позволяет увеличивать размерность обучающей выборки до тех пор, пока не будет достигнуто требуемое высокое качество обобщенных образов, совершенно при этом не опасаясь, что это может привести к неприемлемому увеличению времени распознавания (так как время распознавания в данной модели вообще не зависит от размерности обучающей выборки).

Теоретические проблемы применения экстенсиональных методов распознавания связаны с проблемами поиска информативных групп признаков, нахождения оптимальных метрик для измерения сходства и различия объектов и анализа структуры экспериментальной информации. В то же время успешное решение перечисленных проблем позволяет не только конструировать эффективные распознающие алгоритмы, но и осуществлять переход от экстенсионального знания эмпирических фактов к интенсиональному знанию о закономерностях их структуры.

Переход от экстенсионального знания к интенсиональному происходит на той стадии, когда формальный алгоритм распознавания уже сконструирован и его эффективность продемонстрирована. Тогда производится изучение механизмов, за счет которых достигается полученная эффективность. Такое изучение, связанное с анализом геометрической структуры данных, может, например, привести к выводу о том, что достаточно заменить объекты, представляющие тот или иной диагностический класс, одним типичным представителем (прототипом). Это эквивалентно, как отмечалось выше, заданию традиционной линейной диагностической шкалы. Также возможно, что каждый диагностический класс достаточно заменить несколькими объектами, осмысленными как типичные представители некоторых подклассов, что эквивалентно построению веера линейных шкал. Возможны и другие варианты, которые будут рассмотрены ниже.

Таким образом, обзор методов распознавания показывает, что в настоящее время теоретически разработан целый ряд различных методов распознавания образов. В литературе приводится развернутая их классификация. Однако для большинства этих методов их программная реализация отсутствует, и это глубоко закономерно, можно даже сказать «предопределено» характеристиками самих методов распознавания. Об этом можно судить по тому, что такие системы мало упоминаются в специальной литературе и других источниках информации.

Следовательно, остается недостаточно разработанным вопрос о практической применимости тех или иных теоретических методов распознавания для решения практических задач при реальных (т.е. довольно значительных) размерностях данных и на реальных современных компьютерах.

Вышеупомянутое обстоятельство может быть понято, если напомнить, что сложность математической модели экспоненциально увеличивает трудоемкость программной реализации системы и в такой же степени уменьшает шансы на то, что эта система будет практически работать. Это означает, что реально на рынке можно реализовать только такие программные системы, в основе которых лежат достаточно простые и «прозрачные» математические модели. Поэтому разработчик, заинтересованный в тиражировании своего программного продукта, подходит к вопросу о выборе математической модели не с чисто научной точки зрения, а как прагматик, с учетом возможностей программной реализации. Он считает, что модель должна быть как можно более простой, а значит реализоваться с меньшими затратами и более качественно, а также должна обязательно работать (быть практически эффективной).

В этой связи особенно актуальной представляется задача реализации в системах распознавания механизма обобщения описаний объектов, относящихся к одному классу, т.е. механизма формирования компактных обобщенных образов. Очевидно, что такой механизм обобщения позволит «сжать» любую по размерности обучающую выборку к заранее известной по размерности базе обобщенных образов. Это позволит также поставить и решить ряд задач, которые даже не могут быть сформулированы в таких методах распознавания, как метод сравнения с прототипом, метод k ближайших соседей и АВО.

Это задачи:

  • определения информационного вклада признаков в информационный портрет обобщенного образа;
  • кластерно-конструктивный анализ обобщенных образов;
  • определение семантической нагрузки признака;
  • семантический кластерно-конструктивный анализ признаков;
  • содержательное сравнение обобщенных образов классов друг с другом и признаков друг с другом (когнитивные диаграммы, в т.ч. диаграммы Мерлина ).

Метод, который позволил достичь решения этих задач, также отличает основанную на нем перспективную систему от других систем, как компиляторы отличаются от интерпретаторов, так как благодаря формированию обобщенных образов в этой перспективной системе достигается независимость времени распознавания от объемов обучающей выборки. Известно, что именно существование этой зависимости приводит к практически неприемлемым затратам машинного времени на распознавание в таких методах, как метод k ближайших соседей, АВО и КРП при таких размерностях обучающей выборки, когда можно говорить о достаточной статистике.

В заключение краткого обзора методов распознавания представим суть вышеизложенного в сводной таблице (табл. 3.1), содержащей краткую характеристику различных методов распознавания образов по следующим параметрам:

  • классификация методов распознавания;
  • области применения методов распознавания;
  • классификация ограничений методов распознавания.
Классификация методов распознавания Область применения Ограничения (недостатки)
Интенсиальные методы распознавания Методы, основанные на оценках плотностей распределения значений признаков (или сходства и различия объектов) Задачи с известным распределением, как правило, нормальным, необходимость набора большой статистики Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к непредставительности обучающей выборки и артефактам
Методы, основанные на предположениях о классе решающих функций Классы должны быть хорошо разделяемыми, система признаков — ортонормированной Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками
Логические методы При отборе логических решающих правил (коньюнкций) необходим полный перебор. Высокая вычислительная трудоемкость
Лингвистические (структурные) методы Задачи небольшой размерности пространства признаков Задача восстановления (определения) грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем
Экстенсиальные методы распознавания Метод сравнения с прототипом Задачи небольшой размерности пространства признаков Высокая зависимость результатов классификации от меры расстояния (метрики). Неизвестность оптимальной метрики
Метод k ближайших соседей Высокая зависимость результатов классификации от меры расстояния (метрики). Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость
Алгоритмы вычисления оценок (голосования) АВО Задачи небольшой размерности по количеству классов и признаков Зависимость результатов классификации от меры расстояния (метрики). Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода
Коллективы решающих правил (КРП) Задачи небольшой размерности по количеству классов и признаков Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах

Таблица 3.1 — Сводная таблица классификации методов распознавания, сравнения их областей применения и ограничений

Роль и место распознавания образов в автоматизации управления сложными системами

Автоматизированная система управления состоит из двух основных частей: объекта управления и управляющей системы.

Управляющая система осуществляет следующие функции:

  • идентификация состояния объекта управления;
  • выработка управляющего воздействия исходя из целей управления с учетом состояния объекта управления и среды;
  • оказание управляющего воздействия на объект управления.

Распознавание образов есть не что иное, как идентификация состояния некоторого объекта.

Следовательно, возможность применения системы распознавания образов на этапе идентификации состояния объекта управления представляется вполне очевидной и естественной. Однако в этом может не быть необходимости. Поэтому возникает вопрос, в каких случаях целесообразно применять систему распознавания в АСУ, а в каких нет.

По литературным данным во многих ранее разработанных и современных АСУ в подсистемах идентификации состояния объекта управления и выработки управляющих воздействий используются детерминистские математические модели «прямого счета», которые однозначно и достаточно просто определяют, что делать с объектом управления, если у него наблюдаются определенные внешние параметры.

При этом не ставится и не решается вопрос о том, как связаны эти параметры с теми или иными состояниями объекта управления. Эта позиция соответствует точке зрения, состоящей в том, что «по умолчанию» принимается их взаимно —однозначная связь. Поэтому термины: «параметры объекта управления» и «состояния объекта управления» рассматриваются как синонимы, а понятие «состояние объекта управления» в явном виде вообще не вводится. Однако очевидно, что в общем случае связь между наблюдаемыми параметрами объекта управления и его состоянием имеет динамичный и вероятностный характер.

Таким образом, традиционные АСУ по сути дела являются системами параметрического управления, т.е. системами, которые управляют не состояниями объекта управления, а лишь его наблюдаемыми параметрами. Решение об управляющем воздействии принимается в таких системах как бы «вслепую», т.е. без формирования целостного образа объекта управления и окружающей среды в их текущем состоянии, а также без прогнозирования развития среды и реакции объекта управления на те или иные управляющие воздействия на него, действующие одновременно с прогнозируемым влиянием среды.

С позиций, развиваемых в данной работе, термин «принятие решений» в современном понимании едва ли вообще в полной мере применим к традиционным АСУ. Дело в том, что «принятие решений», как минимум, предполагает целостное видение объекта в окружающей среде, причем не только в их актуальном состоянии, но и в динамике, и во взаимодействии как друг с другом, так и с системой управления, предполагает рассмотрение различных альтернативных вариантов развития всей этой системы, а также сужение многообразия (редукцию) этих альтернатив на основе определенных целевых критериев. Ничего этого, очевидно, нет в традиционных АСУ, или есть, но в упрощенном виде.

Конечно, традиционный метод является адекватным и его применение вполне корректно и оправдано в тех случаях, когда объект управления действительно является стабильной и жестко детерминированной системой, а влиянием окружающей среды на него можно пренебречь.

Однако в других случаях этот метод малоэффективен.

Если объект управления динамичен, то модели, лежащие в основе алгоритмов управления им, быстро становятся неадекватными, так как изменяются отношения между входными и выходными параметрами, а также сам набор существенных параметров. По сути дела это означает, что традиционные АСУ способны управлять состоянием объекта управления лишь вблизи точки равновесия путем слабых управляющих воздействий на него, т.е. методом малых возмущений. Вдали же от состояния равновесия с традиционной точки зрения поведение объекта управления выглядит непредсказуемым и неуправляемым.

Если нет однозначной связи между входными и выходными параметрами объекта управления (т.е. между входными параметрами и состоянием объекта), иначе говоря, если эта связь имеет выраженный вероятностный характер, то детерминистские модели, в которых предполагается, что результатом измерения некоторого параметра является просто число, изначально неприменимы. Кроме того, вид этой связи просто может быть неизвестным, и тогда необходимо исходить из самого общего предположения: что она вероятностная, либо не определена совсем.

Автоматизированная система управления, построенная на традиционных принципах, может работать только на основе параметров, закономерности связей которых уже известны, изучены и отражены в математической модели, в данном же исследовании поставлена задача разработки таких методов проектирования АСУ, которые позволят создать системы, способные выявлять и набор наиболее значимых параметров, и определять характер связей между ними и состояниями объекта управления.

В этом случае необходимо применять более развитые и адекватные реальной ситуации методы измерений:

  • классификация или распознавание образов (обучение на основе обучающей выборки, адаптивность алгоритмов распознавания, адаптивность наборов классов и исследуемых параметров, выделение наиболее существенных параметров и снижение размерности описания при сохранении заданной избыточности и т.д.);
  • статистические измерения, когда результатом измерения некоторого параметра является не отдельное число, а вероятностное распределение: изменение статистической переменной означает не изменение ее значения самого по себе, а изменение характеристик вероятностного распределения ее значений.

В итоге АСУ, основанные на традиционном детерминистском подходе, практически не работают со сложными динамическими многопараметрическими слабодетерминированными объектами управления, такими, например, как макро- и микросоциально-экономические системы в условиях динамичной экономики «переходного периода», иерархические элитные и этнические группы, социум и электорат, физиология и психика человека, природные и искусственные экосистемы и многие другие.

Весьма знаменательно, что в середине 80-х годов школа И.Пригожина развивает подход , согласно которому в развитии любой системы (в том числе и человека) чередуются периоды, в течение которых система ведет себя то как «в основном детерминированная», то как «в основном случайная». Естественно, реальная система управления должна устойчиво управлять объектом управления не только на «детерминистских» участках его истории, но и в точках, когда его дальнейшее поведение становится в высокой степени неопределенным. Уже одно это означает, что необходимо разрабатывать подходы к управлению системами, в поведении которых есть большой элемент случайности (или того, что в настоящее время математически описывается как «случайность»).

Поэтому, в состав перспективных АСУ, обеспечивающих управление сложными динамическими многопараметрическими слабодетерминированными системами, в качестве существенных функциональных звеньев, по-видимому, войдут подсистемы идентификации и прогнозирования состояний среды и объекта управления, основанные на методах искусственного интеллекта (прежде всего распознавания образов), методах поддержки принятия решений и теории информации.

Кратко рассмотрим вопрос о применении систем распознавания образов для принятия решения об управляющем воздействии (подробнее этот вопрос будет рассмотрен далее, так как он является ключевым для данной работы). Если в качестве классов распознавания взять целевые и иные состояния объекта управления, а в качестве признаков — факторы, влияющие на него, то в модели распознавания образов может быть сформирована мера связи факторов и состояний. Это позволяет по заданному состоянию объекта управления получить информацию о факторах, которые способствуют или препятствуют его переходу в это состояние, и, на этой основе, выработать решение об управляющем воздействии.

Факторы могут быть разделены на следующие группы:

  • характеризующие предысторию объекта управления;
  • характеризующие актуальное состояние объекта управления;
  • факторы окружающей среды;
  • технологические (управляемые) факторы.

Таким образом, системы распознавания образов могут быть применены в составе АСУ: в подсистемах идентификации состояния объекта управления и выработки управляющих воздействий.

Это целесообразно в случае, когда объект управления представляет собой сложную систему.

Принятие решения об управляющем воздействии в АСУ

Решение проблемы синтеза адаптивных АСУ сложными системами рассматривается в данной работе с учетом многочисленных и глубоких аналогий между методами распознавания образов и принятия решений.

С одной стороны, задача распознавания образов представляет собой принятие решения о принадлежности распознаваемого объекта к определенному классу распознавания.

С другой стороны, задачу принятия решения авторы предлагают рассматривать как обратную задачу декодирования или обратную задачу распознавания образов (см. раздел 2.2.2).

Особенно очевидной общность основных идей, лежащих в основе методов распознавания образов и принятия решений, становится при рассмотрении их с позиций теории информации.

Многообразие задач принятия решений

Принятие решений как реализация цели

Определение: принятие решения (»выбор») есть действие над множеством альтернатив, в результате которого исходное множество альтернатив сужается, т.е. происходит его редукция.

Выбор является действием, придающим всей деятельности целенаправленность. Именно через акты выбора реализуется подчиненность всей деятельности определенной цели или совокупности взаимосвязанных целей.

Таким образом, для того, чтобы стал возможен акт выбора, необходимо следующее:

  • порождение или обнаружение множества альтернатив, на котором предстоит совершить выбор;
  • определение целей, ради достижения которых осуществляется выбор;
  • разработка и применение способа сравнения альтернатив между собой, т.е. определение рейтинга предпочтения для каждой альтернативы согласно определенным критериям, позволяющим косвенно оценивать, насколько каждая альтернатива соответствует цели.

Современные работы в области поддержки принятия решений выявили характерную ситуацию, которая состоит в том, что полная формализация нахождения наилучшего (в определенном смысле) решения возможна только для хорошо изученных, относительно простых задач, тогда как на практике чаще встречаются слабо структурированные задачи, для которых полностью формализованных алгоритмов не разработано (если не считать полного перебора и метода проб и ошибок). Вместе с тем опытные, компетентные и способные специалисты часто делают выбор, который оказывается достаточно хорошим. Поэтому современная тенденция практики принятия решений в естественных ситуациях состоит в сочетании способности человека решать неформализованные задачи с возможностями формальных методов и компьютерного моделирования: диалоговые системы поддержки принятия решений, экспертные системы, адаптивные человеко-машинные автоматизированные системы управления, нейронные сети и когнитивные системы.

Принятие решений как снятие неопределенности (информационный подход)

Процесс получения информации можно рассматривать как уменьшение неопределенности в результате приема сигнала, а количество информации — как количественную меру степени снятия неопределенности.

Но в результате выбора некоторого подмножества альтернатив из множества, т.е. в результате принятия решения, происходит тоже самое (уменьшение неопределенности). Это значит, что каждый выбор, каждое решение порождает определенное количество информации, а значит может быть описано в терминах теории информации.

Классификация задач принятия решений

Множественность задач принятия решений связана с тем, что каждая компонента ситуации, в которой осуществляется принятие решений, может реализовываться в качественно различных вариантах .

Перечислим только некоторые из этих вариантов:

  • множество альтернатив, с одной стороны, может быть конечным, счетным или континуальным, а с другой, — закрытым (т.е. известным полностью) или открытым (включающим неизвестные элементы);
  • оценка альтернатив может осуществляться по одному или нескольким критериям, которые, в свою очередь, могут иметь количественный или качественный характер;
  • режим выбора может быть однократным (разовым), или многократным, повторяющимся, включающим обратную связь по результатам выбора, т.е. допускающим обучение алгоритмов принятия решений с учетом последствий предыдущих выборов;
  • последствия выбора каждой альтернативы могут быть точно известны заранее (выбор в условиях определенности), иметь вероятностный характер, когда известны вероятности возможных исходов после сделанного выбора (выбор в условиях риска) или иметь неоднозначный исход с неизвестными вероятностями (выбор в условиях неопределенности);
  • ответственность за выбор может отсутствовать, быть индивидуальной или групповой;
  • степень согласованности целей при групповом выборе может варьироваться от полного совпадения интересов сторон (кооперативный выбор) до их противоположности (выбор в конфликтной ситуации). Возможны также промежуточные варианты: компромисс, коалиция, нарастающий или затухающий конфликт.

Различные сочетания перечисленных вариантов и приводят к многочисленным задачам принятия решений, которые изучены в различной степени.

Языки описания методов принятия решений

Об одном и том же явлении можно говорить на различных языках различной степени общности и адекватности. К настоящему времени сложились три основных языка описания выбора.

Самым простым, наиболее развитым и наиболее популярным является критериальный язык .

Критериальный язык

Название этого языка связано с основным предположением, состоящим в том, что каждую отдельно взятую альтернативу можно оценить некоторым конкретным (одним) числом, после чего сравнение альтернатив сводится к сравнению соответствующих им чисел.

Пусть, например, {X} — множество альтернатив, а x — некоторая определенная альтернатива, принадлежащая этому множеству: x∈X. Тогда считается, что для всех x может быть задана функция q(x), которая называется критерием (критерием качества, целевой функцией, функцией предпочтения, функцией полезности и т.п.), обладающая тем свойством, что если альтернатива x 1 предпочтительнее x 2 (обозначается: x 1 > x 2), то q(x 1) > q(x 2).

При этом выбор сводится к отысканию альтернативы с наибольшим значением критериальной функции.

Однако на практике использование лишь одного критерия для сравнения степени предпочтительности альтернатив оказывается неоправданным упрощением, так как более подробное рассмотрение альтернатив приводит к необходимости оценивать их не по одному, а по многим критериям, которые могут иметь различную природу и качественно отличаться друг от друга.

Например, при выборе наиболее приемлемого для пассажиров и эксплуатирующей организации типа самолета на определенных видах трасс сравнение идет одновременно по многим группам критериев: техническим, технологическим, экономическим, социальным, эргономическим и др.

Многокритериальные задачи не имеют однозначного общего решения. Поэтому предлагается множество способов придать многокритериальной задаче частный вид, допускающий единственное общее решение. Естественно, что для разных способов эти решения являются в общем случае различными. Поэтому едва ли не главное в решении многокритериальной задачи — обоснование данного вида ее постановки.

Используются различные варианты упрощения многокритериальной задачи выбора. Перечислим некоторые из них.

  1. Условная максимизация (находится не глобальный экстремум интегрального критерия, а локальный экстремум основного критерия).
  2. Поиск альтернативы с заданными свойствами.
  3. Нахождение множества Парето.
  4. Сведение многокритериальной задачи к однокритериальной путем ввода интегрального критерия.

Рассмотрим подробнее формальную постановку метода сведения многокритериальной задачи к однокритериальной.

Введем интегральный критерий q 0 (x), как скалярную функцию векторного аргумента:

q 0 (x) = q 0 ((q 1 (x), q 2 (x), ..., q n (x)).

Интегральный критерий позволяет упорядочить альтернативы по величине q 0 , выделив тем самым наилучшую (в смысле этого критерия). Вид функции q 0 определяется тем, как конкретно мы представляем себе вклад каждого критерия в интегральный критерий. Обычно используют аддитивные и мультипликативные функции:

q 0 = ∑a i ⋅q i /s i

1 - q 0 = ∏(1 - b i ⋅q i /s i)

Коэффициенты s i обеспечивают:

  1. Безразмерность или единую размерность числа a i ⋅q i /s i (различные частные критерии могут иметь разную размерность, и тогда над ними нельзя производить арифметических операций и свести их в интегральный критерий).
  2. Нормировку, т.е. обеспечение условия: b i ⋅q i /s i <1.

Коэффициенты a i и b i отражают относительный вклад частных критериев q i в интегральный критерий.

Итак, в многокритериальной постановке задача принятия решения о выборе одной из альтернатив сводится к максимизации интегрального критерия:

x * = arg max(q 0 (q 1 (x), q 2 (x), ..., q n (x)))

Основная проблема в многокритериальной постановке задачи принятия решений состоит в том, что необходимо найти такой аналитический вид коэффициентов a i и b i , который бы обеспечил следующие свойства модели:

  • высокую степень адекватности предметной области и точке зрения экспертов;
  • минимальные вычислительные трудности максимизации интегрального критерия, т.е. его расчета для разных альтернатив;
  • устойчивость результатов максимизации интегрального критерия от малых возмущений исходных данных.
  • Устойчивость решения означает, что малое изменение исходных данных должно приводить к малому изменению величины интегрального критерия, и, соответственно, к малому изменению принимаемого решения. Таким образом, если исходные данные практически те же, то и решение должно приниматься или тоже самое, или очень близкое.

Язык последовательного бинарного выбора

Язык бинарных отношений является обобщением многокритериального языка и основан на учете того факта, что когда мы даем оценку некоторой альтернативе, то эта оценка всегда является относительной, т.е. явно или чаще неявно в качестве базы или системы отсчета для сравнения используются другие альтернативы из исследуемого множества или из генеральной совокупности. Мышление человека основано на поиске и анализе противоположностей (конструктов), поэтому нам всегда проще выбрать один из двух противоположных вариантов, чем один вариант из большого и никак неупорядоченного их множества.

Таким образом, основные предположения этого языка сводятся к следующему:

  • отдельная альтернатива не оценивается, т.е. критериальная функция не вводится;
  • для каждой пары альтернатив некоторым образом можно установить, что одна из них предпочтительнее другой или они равноценны или несравнимы;
  • отношение предпочтения в любой паре альтернатив не зависит от остальных альтернатив, предъявленных к выбору.

Существуют различные способы задания бинарных отношений: непосредственный, матричный, с использованием графов предпочтений, метод сечений и др.

Отношения между альтернативами одной пары выражают через понятия эквивалентности, порядка и доминирования.

Обобщенный язык функций выбора

Язык функций выбора основан на теории множеств и позволяет оперировать с отображениями множеств на свои подмножества, соответствующие различным вариантам выбора без необходимости перечисления элементов. Этот язык является весьма общим и потенциально позволяет описывать любой выбор. Однако математический аппарат обобщенных функций выбора в настоящее время еще только разрабатывается и проверяется в основном на задачах, которые уже решены с помощью критериального или бинарного подходов.

Групповой выбор

Пусть имеется группа лиц, имеющих право принимать участие в коллективном принятии решений. Предположим, что эта группа рассматривает некоторый набор альтернатив, и каждый член группы осуществляет свой выбор. Ставится задача о выработке решения, которое определенным образом согласует индивидуальные выборы и в каком-то смысле выражает «общее мнение» группы, т.е. принимается за групповой выбор .

Естественно, различным принципам согласования индивидуальных решений будут соответствовать различные групповые решения.

Правила согласования индивидуальных решений при групповом выборе называются правилами голосования. Наиболее распространенным является «правило большинства», при котором за групповое решение принимается альтернатива, получившая наибольшее число голосов.

Необходимо понимать, что такое решение отражает лишь распространенность различных точек зрения в группе, а не действительно оптимальный вариант, за который вообще никто может и не проголосовать. «Истина не определяется путем голосования».

Кроме того, существуют так называемые «парадоксы голосования», наиболее известный из которых парадокс Эрроу.

Эти парадоксы могут привести, и иногда действительно приводят, к очень неприятным особенностям процедуры голосования: например, бывают случаи, когда группа вообще не может принять единственного решения (нет кворума или каждый голосует за свой уникальный вариант и т.д.), а иногда (при многоступенчатом голосовании) меньшинство может навязать свою волю большинству.

Выбор в условиях неопределенности

Определенность — это частный случай неопределенности, а именно: это неопределенность, близкая к нулю.

В современной теории выбора считается, что в задачах принятия решений существует три основных вида неопределенности:

  1. Информационная (статистическая) неопределенность исходных данных для принятия решений.
  2. Неопределенность последствий принятия решений (выбора).
  3. Расплывчатость в описании компонент процесса принятия решений.

Рассмотрим их по порядку.

Информационная (статистическая) неопределенность в исходных данных

Данные, полученные о предметной области, не могут рассматриваться как абсолютно точные. Кроме того, очевидно, эти данные нас интересуют не сами по себе, а лишь в качестве сигналов, которые, возможно, несут определенную информацию о том, что нас в действительности интересует. Таким образом, реалистичнее считать, что мы имеем дело с данными, не только зашумленными и неточными, но еще и косвенными, а возможно, и не полными. Кроме того, эти данные касаются не всей исследуемой (генеральной) совокупности, а лишь определенного ее подмножества, о котором мы смогли фактически собрать данные, однако при этом мы хотим сделать выводы о всей совокупности, причем хотим еще и знать степень достоверности этих выводов.

В этих условиях используется теория статистических решений.

В этой теории существуют два основных источника неопределенности. Во-первых, неизвестно, какому распределению подчиняются исходные данные. Во-вторых, неизвестно, какое распределение имеет то множество (генеральная совокупность), о котором мы хотим сделать выводы по его подмножеству, образующему исходные данные.

Статистические процедуры это и есть процедуры принятия решений, снимающих оба эти вида неопределенности.

Необходимо отметить, что существует ряд причин, которые приводят к некорректному применению статистических методов:

  • статистические выводы, как и любые другие, всегда имеют некоторую определенную надежность или достоверность. Но, в отличие от многих других случаев, достоверность статистических выводов известна и определяется в ходе статистического исследования;
  • качество решения, полученного в результате применения статистической процедуры, зависит от качества исходных данных;
  • не следует подвергать статистической обработке данные, не имеющие статистической природы;
  • необходимо использовать статистические процедуры, соответствующие уровню априорной информации об исследуемой совокупности (например, не следует применять методы дисперсионного анализа к негауссовым данным). Если распределение исходных данных неизвестно, то надо либо его установить, либо использовать несколько различных методов и сравнить результаты. Если они сильно отличаются — это говорит о неприменимости некоторых из использованных процедур.

Неопределенность последствий

Когда последствия выбора той или иной альтернативы однозначно определяются самой альтернативой, то можно не различать альтернативу и ее последствия, считая само собой разумеющимся, что выбирая альтернативу, мы в действительности выбираем ее последствия.

Однако, в реальной практике нередко приходится иметь дело с более сложной ситуацией, когда выбор той или иной альтернативы неоднозначно определяет последствия сделанного выбора.

В случае дискретного набора альтернатив и исходов их выбора, при условии, что сам набор возможных исходов общий для всех альтернатив, можно считать, что различные альтернативы отличаются друг от друга распределением вероятностей исходов. Эти распределения вероятностей в общем случае могут зависеть от результатов выбора альтернатив и реально наступивших в результате этого исходов. В простейшем случае исходы равновероятны. Сами исходы обычно имеют смысл выигрышей или потерь и выражаются количественно.

Если исходы равны для всех альтернатив, то выбирать нечего. Если же они различны, то можно сравнивать альтернативы, вводя для них те или иные количественные оценки. Разнообразие задач теории игр связано с различным выбором числовых характеристик потерь и выигрышей в результате выбора альтернатив, различными степенями конфликтности между сторонами, выбирающими альтернативы и т.д.

Рассмотрим такой вид неопределенности, как расплывчатая неопределенность

Любая задача выбора является задачей целевого сужения множества альтернатив. Как формальное описание альтернатив (сам их перечень, перечень их признаков или параметров), так и описание правил их сравнения (критериев, отношений) всегда даются в терминах той или иной измерительной шкалы (даже тогда, когда тот, кто это делает, не знает об этом).

Известно, что все шкалы размыты, но в разной степени. Под термином «размытие» понимается свойство шкал, состоящее в том, что всегда можно предъявить такие две альтернативы, которые различимы, т.е. различны в одной шкале и неразличимы, т.е. тождественны, в другой — более размытой. Чем меньше градаций в некоторой шкале, тем более она размыта.

Таким образом, мы можем четко видеть альтернативы и одновременно нечетко их классифицировать, т.е. иметь неопределенность в вопросе о том, к каким классам они относятся.

Уже в своей первой работе по принятию решений в расплывчатой ситуации Беллман и Заде выдвинули идею, состоящую в том, что и цели, и ограничения должны представляться как размытые (нечеткие) множества на множестве альтернатив.

О некоторых ограничениях оптимизационного подхода

Во всех рассмотренных выше задачах выбора и методах принятия решений проблема состояла в том, чтобы в исходном множестве найти наилучшие в заданных условиях, т.е. оптимальные в определенном смысле альтернативы.

Идея оптимальности является центральной идеей кибернетики и прочно вошла в практику проектирования и эксплуатации технических систем. Вместе с тем эта идея требует осторожного к себе отношения, когда мы пытаемся перенести ее в область управления сложными, большими и слабо детерминированными системами, такими, например, как социально-экономические системы.

Для этого заключения имеются достаточно веские основания. Рассмотрим некоторые из них:

  1. Оптимальное решение нередко оказывается неустойчивым, т.е. незначительные изменения в условиях задачи, исходных данных или ограничениях могут привести к выбору существенно отличающихся альтернатив.
  2. Оптимизационные модели разработаны лишь для узких классов достаточно простых задач, которые не всегда адекватно и системно отражают реальные объекты управления. Чаще всего оптимизационные методы позволяют оптимизировать лишь достаточно простые и хорошо формально описанные подсистемы некоторых больших и сложных систем, т.е. позволяют осуществить лишь локальную оптимизацию. Однако, если каждая подсистема некоторой большой системы будет работать оптимально, то это еще совершенно не означает, что оптимально будет работать и система в целом. Поэтому оптимизация подсистемы совсем не обязательно приводит к такому ее поведению, которое от нее требуется при оптимизации системы в целом. Более того, иногда локальная оптимизация может привести к негативным последствиям для системы в целом. Поэтому при оптимизации подсистем и системы в целом необходимо определить дерево целей и подцелей и их приоритетность.
  3. Часто максимизация критерия оптимизации согласно некоторой математической модели считается целью оптимизации, однако в действительностью целью является оптимизация объекта управления. Критерии оптимизации и математические модели всегда связаны с целью лишь косвенно, т.е. более или менее адекватно, но всегда приближенно.

Итак, идею оптимальности, чрезвычайно плодотворную для систем, поддающихся адекватной математической формализации, на сложные системы необходимо переносить с осторожностью. Конечно, математические модели, которые удается иногда предложить для таких систем, можно оптимизировать. Однако всегда следует учитывать сильную упрощенность этих моделей, которой в случае сложных систем уже нельзя пренебречь, а также то, что степень адекватности этих моделей в случае сложных систем фактически неизвестна. Поэтому не известно, какое чисто практическое значение имеет эта оптимизация. Высокая практичность оптимизации в технических системах не должна порождать иллюзии, что она будет настолько же эффективна и при оптимизации сложных систем. Содержательное математическое моделирование сложных систем является весьма затруднительным, приблизительным и неточным. Чем сложнее система, тем осторожнее следует относиться к идее ее оптимизации.

Поэтому при разработке методов управления сложными, большими слабодетерминированными системами, авторы считают основным не только оптимальность выбранного подхода с формальной математической точки зрения, но и его адекватность поставленной цели и самому характеру объекта управления.

Экспертные методы выбора

При исследовании сложных систем часто возникают проблемы, которые по различным причинам не могут быть строго поставлены и решены с применением разработанного в настоящее время математического аппарата. В этих случаях прибегают к услугам экспертов (системных аналитиков), чей опыт и интуиция помогают уменьшить сложность проблемы.

Однако необходимо учитывать, что эксперты сами представляют собой сверхсложные системы, и их деятельность также зависит от многих внешних и внутренних условий. Поэтому в методиках организации экспертных оценок большое внимание уделяется созданию благоприятных внешних и психологических условий для работы экспертов.

На работу эксперта оказывают влияние следующие факторы:

  • ответственность за использование результатов экспертизы;
  • знание того, что привлекаются и другие эксперты;
  • наличие информационного контакта между экспертами;
  • межличностные отношения экспертов (если между ними есть информационный контакт);
  • личная заинтересованность эксперта в результатах оценки;
  • личностные качества экспертов (самолюбие, конформизм, воля и др.)

Взаимодействие между экспертами может как стимулировать, так и подавлять их деятельность. Поэтому в разных случаях используют различные методы экспертизы, отличающиеся характером взаимодействия экспертов друг с другом: анонимные и открытые опросы и анкетирования, совещания, дискуссии, деловые игры, мозговой штурм и т.д.

Существуют различные методы математической обработки мнений экспертов. Экспертам предлагают оценить различные альтернативы либо одним, либо системой показателей. Кроме того им предлагают оценить степень важности каждого показателя (его «вес» или «вклад»). Самим экспертам также приписывается уровень компетентности, соответствующий вкладу каждого из них в результирующее мнение группы.

Развитой методикой работы с экспертами является метод «Дельфи» . Основная идея этого метода состоит в том, что критика и аргументация благотворно влияют на эксперта, если при этом не затрагивается его самолюбие и обеспечиваются условия, исключающие персональную конфронтацию.

Необходимо особо подчеркнуть, что существует принципиальное различие в характере использования экспертных методов в экспертных системах и в поддержке принятия решений. Если в первом случае от экспертов требуется формализация способов принятия решений, то во втором — лишь само решение, как таковое.

Поскольку эксперты привлекаются для реализации именно тех функций, которые в настоящее время или вообще не обеспечиваются автоматизированными системами, или выполняются ими хуже, чем человеком, то перспективным направлением развития автоматизированных систем является максимальная автоматизация этих функций.

Автоматизированные системы поддержки принятия решений

Человек всегда использовал помощников при принятии решений: это были и просто поставщики информации об объекте управления, и консультанты (советники), предлагающие варианты решений и анализирующие их последствия. Человек, принимающий решения, всегда принимал их в определенном информационном окружении: для военачальника — это штаб, для ректора — ученый совет, для министра — коллегия.

В наше время информационная инфраструктура принятия решений немыслима без автоматизированных систем итерактивной оценки решений и особенно систем поддержки решений (DDS — Decision Support Systems) , т.е. автоматизированных систем, которые специально предназначены для подготовки информации, необходимой человеку для принятия решения. Разработка систем поддержки решений ведется, в частности, в рамках интернационального проекта, осуществляемого под эгидой Международного института прикладного системного анализа в Лаксенбурге (Австрия).

Выбор в реальных ситуациях требует выполнения ряда операций, одни из которых более эффективно выполняет человек, а другие — машина. Эффективное объединение их достоинств при одновременной компенсации недостатков и воплощается в автоматизированных системах поддержки принятия решений.

Человек лучше, чем машина принимает решения в условиях неопределенности, но и ему для принятия верного решения необходима адекватная (полная и достоверная) информация, характеризующая предметную область. Однако известно, что человек плохо справляется с большими объемами «сырой» необработанной информации. Поэтому роль машины в поддержке принятия решений может заключаться в том, чтобы осуществить предварительную подготовку информации об объекте управления и неконтролируемых факторах (среде), помочь просмотреть последствия принятия тех или иных решений, а также в том, чтобы представить всю эту информацию в наглядном и удобном для принятия решений виде.

Таким образом, автоматизированные системы поддержки принятия решений компенсируют слабые стороны человека, освобождая его от рутинной предварительной обработки информации, и обеспечивают ему комфортную информационную среду, в которой он может лучше проявить свои сильные стороны. Эти системы ориентированы не на автоматизацию функций лица, принимающего решения (и, как следствие, отчуждение от него этих функций, а значит и ответственности за принятые решения, что часто вообще является неприемлемым), а на предоставлении ему помощи в поиске хорошего решения.

  • Tutorial

Давно хотел написать общую статью, содержащую в себе самые основы Image Recognition, некий гайд по базовым методам, рассказывающий, когда их применять, какие задачи они решают, что возможно сделать вечером на коленке, а о чём лучше и не думать, не имея команды человек в 20.

Какие-то статьи по Optical Recognition я пишу давненько, так что пару раз в месяц мне пишут различные люди с вопросами по этой тематике. Иногда создаётся ощущение, что живёшь с ними в разных мирах. С одной стороны понимаешь, что человек скорее всего профессионал в смежной теме, но в методах оптического распознавания знает очень мало. И самое обидное, что он пытается применить метод из близрасположенной области знаний, который логичен, но в Image Recognition полностью не работает, но не понимает этого и сильно обижается, если ему начать рассказывать что-нибудь с самых основ. А учитывая, что рассказывать с основ - много времени, которого часто нет, становится всё ещё печальнее.

Эта статья задумана для того, чтобы человек, который никогда не занимался методами распознавания изображений, смог в течении 10-15 минут создать у себя в голове некую базовую картину мира, соответствующую тематике, и понять в какую сторону ему копать. Многие методы, которые тут описаны, применимы к радиолокации и аудио-обработке.
Начну с пары принципов, которые мы всегда начинаем рассказывать потенциальному заказчику, или человеку, который хочет начать заниматься Optical Recognition:

  • При решении задачи всегда идти от простейшего. Гораздо проще повесить на персону метку оранжевого цвета, чем следить за человеком, выделяя его каскадами. Гораздо проще взять камеру с большим разрешением, чем разрабатывать сверхразрешающий алгоритм.
  • Строгая постановка задачи в методах оптического распознавания на порядки важнее, чем в задачах системного программирования: одно лишнее слово в ТЗ может добавить 50% работы.
  • В задачах распознавания нет универсальных решений. Нельзя сделать алгоритм, который будет просто «распознавать любую надпись». Табличка на улице и лист текста - это принципиально разные объекты. Наверное, можно сделать общий алгоритм( хороший пример от гугла), но это будет требовать огромного труда большой команды и состоять из десятков различных подпрограмм.
  • OpenCV - это библия, в которой есть множество методов, и с помощью которой можно решить 50% от объёма почти любой задачи, но OpenCV - это лишь малая часть того, что в реальности можно сделать. В одном исследовании в выводах было написано: «Задача не решается методами OpenCV, следовательно, она неразрешима». Старайтесь избегать такого, не лениться и трезво оценивать текущую задачу каждый раз с нуля, не используя OpenCV-шаблоны.
Очень сложно давать какой-то универсальный совет, или рассказать как создать какую-то структуру, вокруг которой можно строить решение произвольных задач компьютерного зрения. Цель этой статьи в структуризации того, что можно использовать. Я попробую разбить существующие методы на три группы. Первая группа это предварительная фильтрация и подготовка изображения. Вторая группа это логическая обработка результатов фильтрации. Третья группа это алгоритмы принятия решений на основе логической обработки. Границы между группами очень условные. Для решения задачи далеко не всегда нужно применять методы из всех групп, бывает достаточно двух, а иногда даже одного.

Список приведённых тут методов не полон. Предлагаю в комментариях добавлять критические методы, которые я не написал и приписывать каждому по 2-3 сопроводительных слова.

Часть 1. Фильтрация

В эту группу я поместил методы, которые позволяют выделить на изображениях интересующие области, без их анализа. Большая часть этих методов применяет какое-то единое преобразование ко всем точкам изображения. На уровне фильтрации анализ изображения не производится, но точки, которые проходят фильтрацию, можно рассматривать как области с особыми характеристиками.
Бинаризация по порогу, выбор области гистограммы
Самое просто преобразование - это бинаризация изображения по порогу. Для RGB изображения и изображения в градациях серого порогом является значение цвета. Встречаются идеальные задачи, в которых такого преобразования достаточно. Предположим, нужно автоматически выделить предметы на белом листе бумаги:




Выбор порога, по которому происходит бинаризация, во многом определяет процесс самой бинаризации. В данном случае, изображение было бинаризовано по среднему цвету. Обычно бинаризация осуществляется с помощью алгоритма, который адаптивно выбирает порог. Таким алгоритмом может быть выбор матожидания или моды . А можно выбрать наибольший пик гистограммы.

Бинаризация может дать очень интересные результаты при работе с гистограммами, в том числе в ситуации, если мы рассматриваем изображение не в RGB, а в HSV . Например, сегментировать интересующие цвета. На этом принципе можно построить как детектор метки так и детектор кожи человека.
Классическая фильтрация: Фурье, ФНЧ, ФВЧ
Классические методы фильтрации из радиолокации и обработки сигналов можно с успехом применять во множестве задач Pattern Recognition. Традиционным методом в радиолокации, который почти не используется в изображениях в чистом виде, является преобразование Фурье (конкретнее - БПФ). Одно из немногих исключение, при которых используется одномерное преобразование Фурье, - компрессия изображений . Для анализа изображений одномерного преобразования обычно не хватает, нужно использовать куда более ресурсоёмкое двумерное преобразование .

Мало кто его в действительности рассчитывает, обычно, куда быстрее и проще использовать свёртку интересующей области с уже готовым фильтром, заточенным на высокие (ФВЧ) или низкие(ФНЧ) частоты. Такой метод, конечно, не позволяет сделать анализ спектра, но в конкретной задаче видеообработки обычно нужен не анализ, а результат.


Самые простые примеры фильтров, реализующих подчёркивание низких частот (фильтр Гаусса) и высоких частот (Фильтр Габора).
Для каждой точки изображения выбирается окно и перемножается с фильтром того же размера. Результатом такой свёртки является новое значение точки. При реализации ФНЧ и ФВЧ получаются изображения такого типа:



Вейвлеты
Но что если использовать для свёртки с сигналом некую произвольную характеристическую функцию? Тогда это будет называться "Вейвлет-преобразование ". Это определение вейвлетов не является корректным, но традиционно сложилось, что во многих командах вейвлет-анализом называется поиск произвольного паттерна на изображении при помощи свёртки с моделью этого паттерна. Существует набор классических функций, используемых в вейвлет-анализе. К ним относятся вейвлет Хаара , вейвлет Морле , вейвлет мексиканская шляпа , и.т.д. Примитивы Хаара, про которые было несколько моих прошлых статей ( , ), относятся к таким функциям для двумерного пространства.


Выше приведено 4 примера классических вейвлетов. 3х-мерный вейвлет Хаара, 2х-мерные вейвлет Мейера, вейвлет Мексиканская Шляпа, вейвлет Добеши. Хорошим примером использования расширеной трактовки вейвлетов является задачка поиска блика в глазу, для которой вейвлетом является сам блик:

Классические вейвлеты обычно используются для , или для их классификации (будет описано ниже).
Корреляция
После такой вольной трактовки вейвлетов с моей стороны стоит упомянуть собственно корреляцию, лежащую в их основе. При фильтрации изображений это незаменимый инструмент. Классическое применение - корреляция видеопотока для нахождения сдвигов или оптических потоков. Простейший детектор сдвига - тоже в каком-то смысле разностный коррелятор. Там где изображения не коррелируют - было движение.

Фильтрации функций
Интересным классом фильтров является фильтрация функций. Это чисто математические фильтры, которые позволяют обнаружить простую математическую функцию на изображении (прямую, параболу, круг). Строится аккумулирующее изображение, в котором для каждой точки исходного изображения отрисовывается множество функций, её порождающих. Наиболее классическим преобразованием является преобразование Хафа для прямых. В этом преобразовании для каждой точки (x;y) отрисовывается множество точек (a;b) прямой y=ax+b, для которых верно равенство. Получаются красивые картинки:


(первый плюсег тому, кто первый найдёт подвох в картинке и таком определении и объяснит его, второй плюсег тому, кто первый скажет что тут изображено)
Преобразование Хафа позволяет находить любые параметризуемые функции. Например окружности . Есть модифицированное преобразование, которое позволяет искать любые . Это преобразование ужасно любят математики. Но вот при обработке изображений, оно, к сожалению, работает далеко не всегда. Очень медленная скорость работы, очень высокая чувствительность к качеству бинаризации. Даже в идеальных ситуациях я предпочитал обходиться другими методами.
Аналогом преобразования Хафа для прямых является преобразование Радона . Оно вычисляется через БПФ, что даёт выигрыш производительности в ситуации, когда точек очень много. К тому же его возможно применять к не бинаризованному изображению.
Фильтрации контуров
Отдельный класс фильтров - фильтрация границ и контуров . Контуры очень полезны, когда мы хотим перейти от работы с изображением к работе с объектами на этом изображении. Когда объект достаточно сложный, но хорошо выделяемый, то зачастую единственным способом работы с ним является выделение его контуров. Существует целый ряд алгоритмов, решающих задачу фильтрации контуров:

Чаще всего используется именно Кэнни, который хорошо работает и реализация которого есть в OpenCV (Собель там тоже есть, но он хуже ищёт контуры).



Прочие фильтры
Сверху приведены фильтры, модификации которых помогают решить 80-90% задач. Но кроме них есть более редкие фильтры, используемые в локальных задачах. Таких фильтров десятки, я не буду приводить их все. Интересными являются итерационные фильтры (например ), а так же риджлет и курвлет преобразования, являющиеся сплавом классической вейвлет фильтрации и анализом в поле радон-преобразования. Бимлет-преобразование красиво работает на границе вейвлет преобразования и логического анализа, позволяя выделить контуры:

Но эти преобразования весьма специфичны и заточены под редкие задачи.

Часть 2. Логическая обработка результатов фильтрации

Фильтрация даёт набор пригодных для обработки данных. Но зачастую нельзя просто взять и использовать эти данные без их обработки. В этом разделе будет несколько классических методов, позволяющих перейти от изображения к свойствам объектов, или к самим объектам.
Морфология
Переходом от фильтрации к логике, на мой взгляд, являются методы математической морфологии ( , ). По сути, это простейшие операции наращивания и эрозии бинарных изображений. Эти методы позволяют убрать шумы из бинарного изображения, увеличив или уменьшив имеющиеся элементы. На базе математической морфологии существуют алгоритмы оконтуривания, но обычно пользуются какими-то гибридными алгоритмами или алгоритмами в связке.
Контурный анализ
В разделе по фильтрации уже упоминались алгоритмы получения границ. Полученные границы достаточно просто преобразуются в контуры. Для алгоритма Кэнни это происходит автоматически, для остальных алгоритмов требуется дополнительная бинаризация. Получить контур для бинарного алгоритма можно например алгоритмом жука .
Контур является уникальной характеристикой объекта. Часто это позволяет идентифицировать объект по контуру. Существует мощный математический аппарат, позволяющий это сделать. Аппарат называется контурным анализом ( , ).

Если честно, то у меня ни разу ни получилось применить контурный анализ в реальных задачах. Уж слишком идеальные условия требуются. То граница не найдётся, то шумов слишком много. Но, если нужно что-то распознавать в идеальных условиях - то контурный анализ замечательный вариант. Очень быстро работает, красивая математика и понятная логика.
Особые точки
Особые точки это уникальные характеристики объекта, которые позволяют сопоставлять объект сам с собой или с похожими классами объектов. Существует несколько десятков способов позволяющих выделить такие точки. Некоторые способы выделяют особые точки в соседних кадрах, некоторые через большой промежуток времени и при смене освещения, некоторые позволяют найти особые точки, которые остаются таковыми даже при поворотах объекта. Начнём с методов, позволяющих найти особые точки, которые не такие стабильные, зато быстро рассчитываются, а потом пойдём по возрастанию сложности:
Первый класс. Особые точки, являющиеся стабильными на протяжении секунд. Такие точки служат для того, чтобы вести объект между соседними кадрами видео, или для сведения изображения с соседних камер. К таким точкам можно отнести локальные максимумы изображения, углы на изображении (лучший из детекторов, пожалуй, детектор Хариса), точки в которых достигается максимумы дисперсии, определённые градиенты и.т.д.
Второй класс. Особые точки, являющиеся стабильными при смене освещения и небольших движениях объекта. Такие точки служат в первую очередь для обучения и последующей классификации типов объектов. Например, классификатор пешехода или классификатор лица - это продукт системы, построенной именно на таких точках. Некоторые из ранее упомянутых вейвлетов могут являются базой для таких точек. Например, примитивы Хаара, поиск бликов, поиск прочих специфических функций. К таким точкам относятся точки, найденные методом гистограмм направленных градиентов (HOG).
Третий класс. Стабильные точки. Мне известно лишь про два метода, которые дают полную стабильность и про их модификации. Это и . Они позволяют находить особые точки даже при повороте изображения. Расчёт таких точек осуществляется дольше по сравнению с остальными методами, но достаточно ограниченное время. К сожалению эти методы запатентованы. Хотя, в России патентовать алгоритмы низя, так что для внутреннего рынка пользуйтесь.

Часть 3. Обучение

ретья часть рассказа будет посвящена методам, которые не работают непосредственно с изображением, но которые позволяют принимать решения. В основном это различные методы машинного обучения и принятия решений. Недавно Яндыкс выложил на Хабр по этой тематике, там очень хорошая подборка. Вот оно есть в текстовой версии. Для серьёзного занятия тематикой настоятельно рекомендую посмотреть именно их. Тут я попробую обозначить несколько основных методов используемых именно в распознавании образов.
В 80% ситуаций суть обучения в задаче распознавания в следующем:
Имеется тестовая выборка, на которой есть несколько классов объектов. Пусть это будет наличие/отсутствие человека на фотографии. Для каждого изображения есть набор признаков, которые были выделены каким-нибудь признаком, будь то Хаар, HOG, SURF или какой-нибудь вейвлет. Алгоритм обучения должен построить такую модель, по которой он сумеет проанализировать новое изображение и принять решение, какой из объектов имеется на изображении.
Как это делается? Каждое из тестовых изображений - это точка в пространстве признаков. Её координаты это вес каждого из признаков на изображении. Пусть нашими признаками будут: «Наличие глаз», «Наличие носа», «Наличие двух рук», «Наличие ушей», и.т.д… Все эти признаки мы выделим существующими у нас детекторами, которые обучены на части тела, похожие на людские. Для человека в таком пространстве будет корректной точка . Для обезьяны точка для лошади . Классификатор обучается по выборке примеров. Но не на всех фотографиях выделились руки, на других нет глаз, а на третьей у обезьяны из-за ошибки классификатора появился человеческий нос. Обучаемый классификатор человека автоматически разбивает пространство признаков таким образом, чтобы сказать: если первый признак лежит в диапазоне 0.5 По существу цель классификатора - отрисовать в пространстве признаков области, характеристические для объектов классификации. Вот так будет выглядеть последовательное приближение к ответу для одного из классификаторов (AdaBoost) в двумерном пространстве:


Существует очень много классификаторов. Каждый из них лучше работает в какой-то своей задачке. Задача подбора классификатора к конкретной задаче это во многом искусство. Вот немножко красивых картинок на тему.
Простой случай, одномерное разделение
Разберём на примере самый простой случай классификации, когда пространство признака одномерное, а нам нужно разделить 2 класса. Ситуация встречается чаще, чем может представиться: например, когда нужно отличить два сигнала, или сравнить паттерн с образцом. Пусть у нас есть обучающая выборка. При этом получается изображение, где по оси X будет мера похожести, а по оси Y -количество событий с такой мерой. Когда искомый объект похож на себя - получается левая гауссиана. Когда не похож - правая. Значение X=0.4 разделяет выборки так, что ошибочное решение минимизирует вероятность принятия любого неправильного решения. Именно поиском такого разделителя и является задача классификации.


Маленькая ремарка. Далеко не всегда оптимальным будет тот критерий, который минимизирует ошибку. Следующий график - это график реальной системы распознавания по радужной оболочке. Для такой системы критерий выбирается такой, чтобы минимизировать вероятность ложного пропуска постороннего человека на объект. Такая вероятность называется «ошибка первого рода», «вероятность ложной тревоги», «ложное срабатывание». В англоязычной литературе «False Access Rate ».
) АдаБуста - один из самых распространённых классификаторов. Например каскад Хаара построен именно на нём. Обычно используют когда нужна бинарная классификация, но ничего не мешает обучить на большее количество классов.
SVM ( , , , ) Один из самых мощных классификаторов, имеющий множество реализаций. В принципе, на задачах обучения, с которыми я сталкивался, он работал аналогично адабусте. Считается достаточно быстрым, но его обучение сложнее, чем у Адабусты и требуется выбор правильного ядра.

Ещё есть нейронные сети и регрессия. Но чтобы кратко их классифицировать и показать, чем они отличаются, нужна статья куда больше, чем эта.
________________________________________________
Надеюсь, у меня получилось сделать беглый обзор используемых методов без погружения в математику и описание. Может, кому-то это поможет. Хотя, конечно, статья неполна и нет ни слова ни о работе со стереоизображениями, ни о МНК с фильтром Калмана, ни об адаптивном байесовом подходе.
Если статья понравится, то попробую сделать вторую часть с подборкой примеров того, как решаются существующие задачки ImageRecognition.

И напоследок

Что почитать?
1) Когда-то мне очень понравилась книга «Цифровая обработка изображений» Б. Яне, которая написана просто и понятно, но в то же время приведена почти вся математика. Хороша для того, чтобы ознакомиться с существующими методами.
2) Классикой жанра является Р Гонсалес, Р. Вудс " Цифровая обработка изображений ". Почему-то она мне далась сложнее, чем первая. Сильно меньше математики, зато больше методов и картинок.
3) «Обработка и анализ изображений в задачах машинного зрения» - написана на базе курса, читаемого на одной из кафедр ФизТеха. Очень много методов и их подробного описания. Но на мой взгляд в книге есть два больших минуса: книга сильно ориентирована на пакет софта, который к ней прилагается, в книге слишком часто описание простого метода превращается в математические дебри, из которых сложно вынести структурную схему метода. Зато авторы сделали удобный сайт, где представлено почти всё содержание - wiki.technicalvision.ru Добавить метки

Метод перебора. В данном методе производится сравнение с некоторой базой данных, где для каждого из объектов представлены разные варианты модификации отображения. Например, для оптического распознавания образов можно применить метод перебора под разными углами или масштабами, смещениями, деформациями и т. д. Для букв можно перебирать шрифт или его свойства. В случае распознавания звуковых образов происходит сравнение с некоторыми известными шаблонами (слово, произнесенное многими людьми). Далее, производится более глубокий анализ характеристик образа. В случае оптического распознавания - это может быть определение геометрических характеристик. Звуковой образец в этом случае подвергается частотному и амплитудному анализу.

Следующий метод - использование искусственных нейронных сетей (ИНС). Он требует либо огромного количества примеров задачи распознавания, либо специальной структуры нейронной сети, учитывающей специфику данной задачи. Но, тем не менее, этот метод отличается высокой эффективностью и производительностью.

Методы, основанные на оценках плотностей распределения значений признаков . Заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к начальным вероятностям принадлежности объектов к тому или иному классу и условным плотностям распределения признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет непосредственное отношение к методам дискриминантного анализа. Байесовский подход к принятию решений относится к наиболее разработанным в современной статистике параметрическим методам, для которых считается известным аналитическое выражение закона распределения (нормальный закон) и требуется только оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы). Основными трудностями применения данного метода считается необходимость запоминания всей обучающей выборки для вычисления оценок плотностей и высокая чувствительность к обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе считается известным вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности находят оптимальное приближение к решающей функции. Функционал качества решающего правила обычно связывают с ошибкой. Основным достоинством метода является ясность математической постановки задачи распознавания. Возможность извлечения новых знаний о природе объекта, в частности знаний о механизмах взаимодействия атрибутов, здесь принципиально ограничена заданной структурой взаимодействия, зафиксированной в выбранной форме решающих функций.

Метод сравнения с прототипом. Это наиболее легкий на практике экстенсиональный метод распознавания. Он применяется, в том случае, когда распознаваемые классы показываются компактными геометрическими классами. Тогда в качестве точки - прототипа выбирается центр геометрической группировки (или ближайший к центру объект).

Для классификации неопределенного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и он. Очевидно, никаких обобщенных образов в данном методе не формируется. В качестве меры могут применяться различные типы расстояний.

Метод k ближайших соседей. Метод заключается в том, что при классификации неизвестного объекта находится заданное число (k) геометрически ближайших пространстве признаков других ближайших соседей с уже известной принадлежностью к какому-либо классу. Решение об отнесении неизвестного объекта принимается путем анализа информации о его ближайших соседей. Необходимость сокращения числа объектов в обучающей выборке (диагностических прецедентов) является недостатком данного метода, так как это уменьшает представительность обучающей выборки.

Исходя из того, что различные алгоритмы распознавания проявляют себя по-разному на одной и той же выборке, то встает вопрос о синтетическом решающем правиле, которое бы использовало сильные стороны всех алгоритмов. Для этого существует синтетический метод или коллективы решающих правил, которые объединяют в себе максимально положительные стороны каждого из методов.

В заключение обзора методов распознавания представим суть вышеизложенного в сводной таблице, добавив туда также некоторые другие используемые на практике методы.

Таблица 1. Таблица классификации методов распознавания, сравнения их областей применения и ограничений

Классификация методов распознавания

Область применения

Ограничения (недостатки)

Интенсиальные методы распознавания

Методы, основанные на оценках плотностей

Задачи с известным распределением (нормальным), необходимость набора большой статистики

Необходимость перебора всей обучающей выборки при распознавании, высокая чувствительность к не представительности обучающей выборки и артефактам

Методы, основанные на предположениях

Классы должны быть хорошо разделяемыми

Должен быть заранее известен вид решающей функции. Невозможность учета новых знаний о корреляциях между признаками

Логические методы

Задачи небольшой размерности

При отборе логических решающих правил необходим полный перебор. Высокая трудоемкость

Лингвистические методы

Задача определения грамматики по некоторому множеству высказываний (описаний объектов), является трудно формализуемой. Нерешенность теоретических проблем

Экстенсиальные методы распознавания

Метод сравнения с прототипом

Задачи небольшой размерности пространства признаков

Высокая зависимость результатов классификации от метрики. Неизвестность оптимальной метрики

Метод k ближайших соседей

Высокая зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Вычислительная трудоемкость

Алгоритмы вычисления оценок (АВО)

Задачи небольшой размерности по количеству классов и признаков

Зависимость результатов классификации от метрики. Необходимость полного перебора обучающей выборки при распознавании. Высокая техническая сложность метода

Коллективы решающих правил (КРП) - синтетический метод.

Задачи небольшой размерности по количеству классов и признаков

Очень высокая техническая сложность метода, нерешенность ряда теоретических проблем, как при определении областей компетенции частных методов, так и в самих частных методах