Біографії Характеристики Аналіз

Доказ властивостей системи лінійно-залежних векторів. Лінійна залежність та незалежність векторів

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Рішення.Шукаємо спільне рішеннясистеми рівнянь

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гауса. Для цього запишемо цю однорідну систему за координатами:

Матриця системи

Дозволена система має вигляд: (r A = 2, n= 3). Система спільна та невизначена. Її загальне рішення ( x 2 – вільна змінна): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наявність ненульового приватного рішення, наприклад, говорить про те, що вектори a 1 , a 2 , a 3 лінійно залежні.

приклад 2.

З'ясувати, чи є дана системавекторів лінійно залежної або лінійно незалежної:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Рішення.Розглянемо однорідну систему рівнянь a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

або у розгорнутому вигляді (за координатами)

Система однорідна. Якщо вона невироджена, вона має єдине рішення. В разі однорідної системи- нульове (тривіальне) рішення. Отже, у разі система векторів незалежна. Якщо ж система вироджена, вона має ненульові рішення і, отже, вона залежна.

Перевіряємо систему на виродженість:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невироджена і, отже, вектори a 1 , a 2 , a 3 лінійно незалежні.

Завдання.З'ясувати, чи дана система векторів є лінійно залежною або лінійно незалежною:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Довести, що система векторів буде лінійно залежною, якщо вона містить:

а) два рівні вектори;

б) два пропорційні вектори.

Завдання 1.З'ясувати, чи система векторів лінійно незалежної. Систему векторів задаватимемо матрицею системи, стовпці якої складаються з координат векторів.

.

Рішення.Нехай лінійна комбінація дорівнює нулю. Записавши цю рівність у координатах, отримаємо таку систему рівнянь:

.

Така система рівнянь називається трикутною. Вона має єдине рішення . Отже, вектори лінійно незалежні.

Завдання 2.З'ясувати, чи є лінійно незалежною система векторів.

.

Рішення.Вектори лінійно незалежні (див. Завдання 1). Доведемо, що вектор є лінійною комбінацією векторів . Коефіцієнти розкладання за векторами визначаються із системи рівнянь

.

Ця система як трикутна має єдине рішення.

Отже, система векторів лінійно залежна.

Зауваження. Матриці, такого виду, як у задачі 1, називаються трикутними , а задачі 2 – східчасто-трикутними . Питання лінійної залежності системи векторів легко вирішується, якщо матриця, складена з координат цих векторів, є східчасто трикутною. Якщо матриця не має спеціального виду, то за допомогою елементарних перетворень рядків , Що зберігають лінійні співвідношення між стовпцями, її можна привести до східчасто-трикутного вигляду.

Елементарними перетвореннямирядківматриці (ЕПС) називаються наступні операції над матрицею:

1) перестановка рядків;

2) множення рядка на відмінне від нуля число;

3) додавання до рядка іншого рядка, помноженого на довільне число.

Завдання 3.Знайти максимальну лінійно незалежну підсистему та обчислити ранг системи векторів

.

Рішення.Наведемо матрицю системи за допомогою ЕПС до східчасто-трикутного вигляду. Щоб пояснити порядок дій, рядок з номером матриці, що перетворюється, позначимо символом . У стовпці після стрілки вказані дії над рядками матриці, які потрібно виконати для отримання рядків нової матриці.


.

Очевидно, що перші два стовпці отриманої матриці лінійно незалежні, третій стовпець є їхньою лінійною комбінацією, а четвертий не залежить від двох перших. Вектори називаються базисними. Вони утворюють максимальну лінійно незалежну підсистему системи , А ранг системи дорівнює трьом.



Базис, координати

Завдання 4.Знайти базис і координати векторів у цьому базисі на множині геометричні векторикоординати яких задовольняють умові .

Рішення. Багато є площиною, що проходить через початок координат. Довільний базис на площині складається із двох неколлінеарних векторів. Координати векторів у вибраному базисі визначаються розв'язком відповідної системи лінійних рівнянь.

Існує й інший спосіб вирішення цього завдання, коли знайти базис можна за координатами.

Координати простори є координатами на площині , оскільки пов'язані співвідношенням тобто не є незалежними. Незалежні змінні і (вони називаються вільними) однозначно визначають вектор на площині і, отже, можуть бути обрані координатами в . Тоді базис складається з векторів, що лежать у відповідних наборах вільних змінних і , тобто .

Завдання 5.Знайти базис і координати векторів у цьому базисі на багатьох векторів простору , у яких непарні координати рівні між собою.

Рішення. Виберемо, як і в попередній задачі, координати у просторі .

Так як , то вільні змінні однозначно визначають вектор і, отже, є координатами. Відповідний базис складається з векторів.

Завдання 6.Знайти базис і координати векторів у цьому базисі на безлічі всіх матриць виду , де - Довільні числа.

Рішення. Кожна матриця з однозначно представлена ​​у вигляді:

Це співвідношення є розкладанням вектора з базису
з координатами .

Завдання 7.Знайти розмірність та базис лінійної оболонки системи векторів

.

Рішення.Перетворимо за допомогою ЕПС матрицю з координат векторів системи до східчасто-трикутного вигляду.




.

Стовпці останньої матриці лінійно незалежні, а стовпці лінійно виражаються крізь них. Отже, вектори утворюють базис , і .

Зауваження. Базис у вибирається неоднозначно. Наприклад, вектори також утворюють базис .

Лінійна залежність та лінійна незалежність векторів.
Векторні бази. Афінна система координат

В аудиторії знаходиться візок із шоколадками, і кожному відвідувачу сьогодні дістанеться солодка парочка – аналітична геометрія з лінійною алгеброю. У цій статті будуть порушені відразу два розділи вищої математики, і ми подивимося, як вони вживаються в одній обгортці. Зроби паузу, з'їж «Твікс»! …млинець, ну і нісенітниця суперечок. Хоча гаразд, забивати не буду, зрештою, на навчання має бути позитивний настрій.

Лінійна залежність векторів, лінійна незалежність векторів, базис векторівта ін терміни мають не тільки геометричну інтерпретацію, але, перш за все, алгебраїчний сенс. Саме поняття «вектор» з погляду лінійної алгебри – це далеко не завжди той «звичайний» вектор, який ми можемо зобразити на площині чи просторі. За доказом далеко не треба ходити, спробуйте намалювати вектор п'ятивимірного простору. . Або вектор погоди, за яким я щойно сходив на Гісметео: – температура та атмосферний тисквідповідно. Приклад, звісно, ​​некоректний з погляду властивостей векторного просторуПроте, ніхто не забороняє формалізувати дані параметри вектором. Дихання осені.

Ні, я не збираюся вантажити вас теорією, лінійними векторними просторами, завдання полягає в тому, щоб зрозумітивизначення та теореми. Нові терміни (лінійна залежність, незалежність, лінійна комбінація, базис і т.д.) придатні до всіх векторів з точки зору алгебри , але приклади будуть дані геометричні. Таким чином, все просто, доступно та наочно. Крім завдань аналітичної геометрії ми розглянемо деякі типові завданняалгебри. Для освоєння матеріалу бажано ознайомитись з уроками Вектори для чайниківі Як визначити обчислювач?

Лінійна залежність та незалежність векторів площини.
Базис площини та афінна система координат

Розглянемо площину комп'ютерного столу (просто столу, тумбочки, підлоги, стелі, кому що подобається). Завдання полягатиме в наступних діях:

1) Вибрати базис площини. Грубо кажучи, стільниця має довжину і ширину, тому інтуїтивно зрозуміло, що для побудови базису потрібно два вектори. Одного вектора явно мало, три вектори – зайва.

2) На основі обраного базису встановити систему координат(координатну сітку), щоб присвоїти координати всім предметам, що знаходяться на столі.

Не дивуйтесь, спочатку пояснення будуть на пальцях. Причому на ваших. Будь ласка, помістіть вказівний палець лівої рукина край стільниці так, щоб він дивився на монітор. Це буде вектор. Тепер помістіть мізинець правої руки на край столу так само - щоб він був спрямований на екран монітора. Це буде вектор. Усміхніться, ви чудово виглядаєте! Що можна сказати про вектори? Дані вектори колінеарні, а значить, лінійновиражаються один через одного:
, ну, чи навпаки: , де – деяке число, відмінне від нуля.

Картинку цього дійства можна переглянути на уроці Вектори для чайниківде я пояснював правило множення вектора на число.

Чи будуть ваші пальчики задавати базис на площині комп'ютерного столу? Очевидно, що ні. Колінеарні вектори подорожують туди-сюди одномунапрямку, а площина має довжину і ширину.

Такі вектори називають лінійно залежними.

Довідка: Слова «лінійний», «лінійно» позначають той факт, що в математичних рівняннях, виразів немає квадратів, кубів, інших ступенів, логарифмів, синусів і т.д. Є тільки лінійні (1-го ступеня) вирази та залежності.

Два векторні площині лінійно залежнітоді і тільки тоді, коли вони колінеарні.

Схрестіть пальці на столі, щоб між ними був будь-який кут крім 0 або 180 градусів. Два векторні площинілінійно незалежні в тому і лише тому випадку, якщо вони не колінеарні. Отже, базис отримано. Не треба бентежитись, що базис вийшов «косим» з неперпендикулярними векторами різної довжини. Незабаром ми побачимо, що для його побудови придатний не тільки кут 90 градусів, і не тільки одиничні, рівні за довжиною вектори.

Будь-якийвектор площині єдиним чиномрозкладається по базису:
, де - дійсні числа. Числа називають координатами векторау цьому базисі.

Також кажуть, що векторпредставлений у вигляді лінійної комбінаціїбазисних векторів. Тобто вираз називають розкладання векторапо базисуабо лінійною комбінацієюбазових векторів.

Наприклад, можна сказати, що вектор розкладений за ортонормованим базисом площини, а можна сказати, що він представлений у вигляді лінійної комбінації векторів.

Сформулюємо визначення базисуформально: Базисом площининазивається пара лінійно незалежних (неколлінеарних) векторів, , при цьому будь-якийВектор площини є лінійною комбінацією базисних векторів.

Істотним моментом визначення є той факт, що вектори взяті у певному порядку. Базиси – це два абсолютно різних базис! Як то кажуть, мізинець лівої руки не переставиш на місце мізинця правої руки.

З базисом розібралися, але його недостатньо, щоб задати координатну сітку та присвоїти координати кожному предмету вашого комп'ютерного столу. Чому замало? Вектори є вільними та блукають по всій площині. То як привласнити координати тим маленьким брудним точкам столу, які залишилися після бурхливих вихідних? Необхідний відправний орієнтир. І таким орієнтиром є знайома всім точка – початок координат. Розбираємось із системою координат:

Почну зі «шкільної» організації. Вже на вступному уроці Вектори для чайниківя виділяв деякі відмінності між прямокутною системою координат та ортонормованим базисом. Ось стандартна картина:

Коли говорять про прямокутної системи координат, то найчастіше мають на увазі початок координат, координатні осіта масштаб по осях. Спробуйте набрати в пошуковій системі «прямокутна система координат», і ви побачите, що багато джерел вам розповідатимуть про знайомі з 5-6-го класу координатні осі і про те, як відкладати точки на площині.

З іншого боку, складається враження, що прямокутну системукоординат цілком можна визначити через ортонормований базис. І це майже так. Формулювання звучить так:

початком координат, і ортонормованийбазис задають декартову прямокутну систему координат площини . Тобто прямокутна система координат однозначновизначається єдиною точкою та двома одиничними ортогональними векторами. Саме тому ви бачите креслення, яке я привів вище – в геометричних задачахчасто (але не завжди) малюють і вектори, і координатні осі.

Думаю, всім зрозуміло, що за допомогою точки (початку координат) та ортонормованого базису БУДЬ-ЯКІЙ ТОЧЦІ площині і БУДЬ-ЯКОМУ ВЕКТОРУ площиніможна присвоїти координати. Образно кажучи, "на площині все можна пронумерувати".

Чи мають координатні вектори бути одиничними? Ні, вони можуть мати довільну ненульову довжину. Розглянемо точку та два ортогональні вектори довільної ненульової довжини:


Такий базис називається ортогональним. Початок координат з векторами задають координатну сітку, і будь-яка точка площини будь-який вектор мають свої координати в даному базисі. Наприклад, або . Очевидна незручність полягає в тому, що координатні вектори в загальному випадку мають різні довжини, відмінні від одиниці. Якщо довжини дорівнюють одиниці, то виходить звичний ортонормований базис.

! Примітка : в ортогональному базисі, а також нижче в афінних базисах площини та простору одиниці по осях вважаються УМОВИМИ. Наприклад, в одній одиниці по осі абсцис міститься 4 см, в одній одиниці по осі ординат 2 см. Даної інформації достатньо, щоб при необхідності перевести «нестандартні» координати «наші звичайні сантиметри».

І друге питання, на яке вже насправді дана відповідь – чи обов'язково кут між базисними векторами має дорівнювати 90 градусам? Ні! Як свідчить визначення, базові вектори повинні бути лише неколінеарними. Відповідно кут може бути будь-яким, крім 0 та 180 градусів.

Точка площини, яка називається початком координат, і неколінеарнівектори , , задають афінну систему координат площини :


Іноді таку систему координат називають косокутноїсистемою. Як приклади на кресленні зображені точки та вектори:

Як розумієте, афінна система координат ще менш зручна, у ній не працюють формули довжин векторів та відрізків, які ми розглядали у другій частині уроку Вектори для чайників, багато смачні формули, пов'язані з скалярним твором векторів. Зате справедливі правила складання векторів і множення вектора на число, формули поділу відрізка в даному відношенні, а також деякі типи завдань, які ми швидко розглянемо.

А висновок такий, що найзручнішим окремим випадком афінної системикоординат є декартова прямокутна система. Тому її, рідну, найчастіше і доводиться бачити. …Втім, все в цьому житті відносно – існує чимало ситуацій, в яких доречна саме косокутна (або якась інша, наприклад, полярна) система координат. Та й гуманоїдам такі системи можуть прийтись до смаку =)

Переходимо до практичної частини. Усі завдання даного урокусправедливі як прямокутної системи координат, так загального афінного випадку. Складного тут немає, весь матеріал доступний навіть школяру.

Як визначити колінеарність векторів площини?

Типова річ. Для того, щоб два вектори площині були колінеарні, необхідно і достатньо, щоб їхні відповідні координати були пропорційними. Фактично, це покоординатная деталізація очевидного співвідношення .

Приклад 1

а) Перевірити, чи колінеарні вектори .
б) Чи утворюють базис вектори ?

Рішення:
а) З'ясуємо, чи існує для векторів коефіцієнт пропорційності, такий, щоб виконувались рівності:

Обов'язково розповім про «піжонський» різновид застосування цього правила, який цілком прокочує на практиці. Ідея полягає в тому, щоб одразу скласти пропорцію і подивитися, чи буде вона вірною:

Складемо пропорцію із відносин відповідних координат векторів:

Скорочуємо:
, таким чином, відповідні координати пропорційні, отже,

Ставлення можна було скласти і навпаки, це рівноцінний варіант:

Для самоперевірки можна використовувати ту обставину, що колінеарні векторилінійно виражаються один через одного. У даному випадкумають місце рівності . Їхня справедливість легко перевіряється через елементарні дії з векторами:

б) Два вектори площини утворюють базис, якщо вони колінеарні (лінійно незалежні). Досліджуємо на колінеарність вектори . Складемо систему:

З першого рівняння випливає, що , з другого рівняння випливає, що , отже, система несумісна(Рішень немає). Таким чином, відповідні координати векторів не є пропорційними.

Висновок: вектори лінійно незалежні та утворюють базис.

Спрощена версія рішення виглядає так:

Складемо пропорцію з відповідних координат векторів :
, Отже, ці вектори лінійно незалежні і утворюють базис.

Зазвичай такий варіант бракують рецензенти, але виникає проблема у випадках, коли деякі координати дорівнюють нулю. Ось так: . Або так: . Або так: . Як тут діяти через пропорцію? (Справді, на нуль ж ділити не можна). Саме з цієї причини я назвав спрощене рішення «піжонським».

Відповідь:а), б) утворюють.

Невеликий творчий прикладдля самостійного рішення:

Приклад 2

При якому значенні параметра вектори будуть колінеарні?

У зразку рішення параметр знайдено через пропорцію.

Існує витончений метод алгебри перевірки векторів на колінеарність., систематизуємо наші знання і п'ятим пунктом якраз додамо його:

Для двох векторів площини еквівалентні наступні твердження:

2) вектори утворюють базис;
3) вектори не колінеарні;

+ 5) визначник, складений координат даних векторів, відмінний від нуля.

Відповідно, еквівалентні наступні протилежні твердження:
1) вектори лінійно залежні;
2) вектори не утворюють базис;
3) вектори колінеарні;
4) вектори можна лінійно виразити один через одного;
+ 5) визначник, складений з координат даних векторів, дорівнює нулю.

Я дуже і дуже сподіваюся, що на даний момент вам вже зрозумілі всі терміни і твердження, що зустрілися.

Розглянемо докладніше новий, п'ятий пункт: два вектори площині колінеарні тоді і тільки тоді, коли визначник, складений з координат даних векторів, дорівнює нулю:. Для застосування цієї ознаки, природно, потрібно вміти знаходити визначники.

ВирішимоПриклад 1 другим способом:

а) Обчислимо визначник, складений координат векторів :
, отже, ці вектори колінеарні.

б) Два вектори площини утворюють базис, якщо вони колінеарні (лінійно незалежні). Обчислимо визначник, складений координат векторів :
, Отже, вектори лінійно незалежні і утворюють базис.

Відповідь:а), б) утворюють.

Виглядає значно компактніше та симпатичніше, ніж рішення з пропорціями.

З допомогою розглянутого матеріалу можна встановлювати як колінеарність векторів, а й доводити паралельність відрізків, прямих. Розглянемо пару завдань із конкретними геометричними фігурами.

Приклад 3

Дано вершини чотирикутника. Довести, що чотирикутник є паралелограмом.

Доведення: Креслення в задачі будувати не потрібно, оскільки рішення буде чисто аналітичним Згадуємо визначення паралелограма:
Паралелограмом називається чотирикутник, у якого протилежні сторони попарно паралельні.

Таким чином, необхідно довести:
1) паралельність протилежних сторін та ;
2) паралельність протилежних сторін та .

Доводимо:

1) Знайдемо вектори:


2) Знайдемо вектори:

Вийшов той самий вектор («по шкільному» – рівні вектори). Колінеарність дуже очевидна, але рішення таки краще оформити з толком, з розстановкою. Обчислимо визначник, складений координат векторів :
, Отже, ці вектори колінеарні, і .

Висновок: Протилежні сторониЧотирикутники попарно паралельні, отже, він є паралелограмом за визначенням. Що і потрібно було довести.

Більше фігур хороших та різних:

Приклад 4

Дано вершини чотирикутника. Довести, що чотирикутник є трапецією.

Для суворішого формулювання докази краще, звичайно, роздобути визначення трапеції, але досить і просто згадати, як вона виглядає.

Це завдання самостійного рішення. Повне рішеннянаприкінці уроку.

А тепер настав час потихеньку перебиратися з площини в простір:

Як визначити колінеарність векторів простору?

Правило дуже схоже. Для того щоб два вектори простору були колінеарними, необхідно і достатньо, щоб їх відповідні координати були пропорційними.

Приклад 5

З'ясувати, чи колінеарні будуть наступні вектори простору:

а);
б)
в)

Рішення:
а) Перевіримо, чи є коефіцієнт пропорційності для відповідних координат векторів:

Система не має рішення, отже вектори не колінеарні.

«Спрощенка» оформляється перевіркою пропорції. В даному випадку:
– відповідні координати не пропорційні, отже вектори не колінеарні.

Відповідь:вектори не колінеарні.

б-в) Це пункти самостійного рішення. Спробуйте оформити його двома способами.

Існує метод перевірки просторових векторів на колінеарність та через визначник третього порядку, даний спосібосвітлений у статті Векторний твір векторів.

Аналогічно плоскому випадку розглянутий інструментарій може застосовуватися з метою дослідження паралельності просторових відрізків і прямих.

Ласкаво просимо до другого розділу:

Лінійна залежність та незалежність векторів тривимірного простору.
Просторовий базис та афінна система координат

Багато закономірностей, які ми розглянули на площині, будуть справедливими і простору. Я постарався мінімізувати конспект з теорії, оскільки левова частка інформації вже розжована. Тим не менш, рекомендую уважно прочитати вступну частину, оскільки з'являться нові терміни та поняття.

Тепер замість площини комп'ютерного столу досліджуємо тривимірний простір. Спочатку створимо його базис. Хтось зараз знаходиться в приміщенні, хтось на вулиці, але в будь-якому разі нам нікуди не подітися від трьох вимірів: ширини, довжини та висоти. Тому для побудови базису потрібно три просторові вектори. Одного-двох векторів мало, четвертий – зайвий.

І знову розминаємось на пальцях. Будь ласка, підніміть руку вгору і розчепірте в різні сторони великий, вказівний та середній палець. Це будуть вектори, вони дивляться у різні боки, мають різну довжину та мають різні кути між собою. Вітаю, базис тривимірного простору готовий! До речі, не потрібно демонструвати таке викладачам, як не крути пальцями, а від визначень нікуди не подітися =)

Далі поставимо важливим питанням, будь-які три вектори утворюють базис тривимірного простору ? Будь ласка, щільно притисніть три пальці до стільниці комп'ютерного столу. Що сталося? Три вектори розташувалися в одній площині, і, грубо кажучи, у нас зник один із вимірів – висота. Такі вектори є компланарнимиі цілком очевидно, що базису тривимірного простору не створюють.

Слід зазначити, що компланарні вектори нічого не винні лежати у одній площині, можуть перебувати у паралельних площинах(Тільки не робіть цього з пальцями, так відривався тільки Сальвадор Далі =)).

Визначення: вектори називаються компланарнимиякщо існує площина, якою вони паралельні. Тут логічно додати, що якщо такої площини не існує, то вектори будуть не компланарні.

Три компланарні вектори завжди лінійно залежнітобто лінійно виражаються один через одного. Для простоти знову припустимо, що вони лежать в одній площині. По-перше, вектори мало того, що компланарні, можуть бути ще колінеарні, тоді будь-який вектор можна виразити через будь-який вектор. У другому випадку, якщо, наприклад, вектори не колінеарні, то третій вектор виражається через них єдиним чином: (а чому легко здогадатися за матеріалами попереднього розділу).

Справедливе та зворотне твердження: три некомпланарні вектори завжди лінійно незалежні, тобто аж ніяк не виражаються один через одного. І, очевидно, лише такі вектори можуть утворити базис тривимірного простору.

Визначення: Базисом тривимірного просторуназивається трійка лінійно незалежних (некомпланарних) векторів, взятих у певному порядкупри цьому будь-який вектор простору єдиним чиномрозкладається по даному базису , де координати вектора в даному базисі

Нагадую, також можна сказати, що вектор представлений у вигляді лінійної комбінаціїбазових векторів.

Поняття системи координат вводиться так само, як і для плоского випадкудостатньо однієї точки і будь-яких трьох лінійно не залежних векторів:

початком координат, і некомпланарнівектори , взяті у певному порядку, задають афінну систему координат тривимірного простору :

Звичайно, координатна сітка «коса» і малозручна, але побудована система координат дозволяє нам однозначновизначити координати будь-якого вектора та координати будь-якої точки простору. Аналогічно площині, в афінній системі координат простору не працюватимуть деякі формули, про які я вже згадував.

Найбільш звичним і зручним окремим випадком афінної системи координат є прямокутна система координат простору:

Точка простору, яка називається початком координат, і ортонормованийбазис задають декартову прямокутну систему координат простору . Знайоме зображення:

Перед тим, як перейти до практичних завдань, знову систематизуємо інформацію:

Для трьох векторівпростору еквівалентні наступним твердженням:
1) вектори лінійно незалежні;
2) вектори утворюють базис;
3) вектори не компланарні;
4) вектори не можна лінійно виразити один через одного;
5) визначник, складений координат даних векторів, відмінний від нуля.

Протилежні висловлювання, гадаю, зрозумілі.

Лінійна залежність/незалежність векторів простору традиційно перевіряється за допомогою визначника (пункт 5). Ті, що залишилися практичні завданняноситимуть яскраво виражений алгебраїчний характер. Пора повісити на цвях геометричну ключку і орудувати бейсбольною битою лінійною алгебри:

Три векторні просторукомпланарні тоді і тільки тоді, коли визначник, складений координат даних векторів, дорівнює нулю : .

Звертаю увагу на невеликий технічний нюанс: координати векторів можна записувати не тільки у стовпці, а й у рядки (значення визначника від цього не зміниться – див. властивості визначників). Але набагато краще у стовпці, оскільки це вигідніше для вирішення деяких практичних завдань.

Тим читачам, які трошки забули методи розрахунку визначників, а може і взагалі слабо в них орієнтуються, рекомендую один із моїх найстаріших уроків: Як визначити обчислювач?

Приклад 6

Перевірити, чи утворюють базис тривимірного простору такі вектори:

Рішення: Фактично все рішення зводиться до обчислення визначника

а) Обчислимо визначник, складений із координат векторів (визначник розкритий по першому рядку):

, Отже, вектори лінійно незалежні (не компланарні) і утворюють базис тривимірного простору.

Відповідь: дані вектори утворюють базис

б) Це пункт самостійного рішення. Повне рішення та відповідь наприкінці уроку.

Зустрічаються і творчі завдання:

Приклад 7

За якого значення параметра вектори будуть компланарні?

Рішення: Вектори компланарні тоді і тільки тоді, коли визначник, складений координат даних векторів дорівнює нулю:

Фактично, потрібно вирішити рівняння з визначником. Налітаємо на нулі як шуліки на тушканчиків - визначник найвигідніше розкрити по другому рядку і відразу ж позбутися мінусів:

Проводимо подальші спрощення та зводимо справу до найпростішого лінійному рівнянню:

Відповідь: при

Тут легко виконати перевірку, для цього потрібно підставити отримане значення у вихідний визначник та переконатися, що , розкривши його наново.

На закінчення розглянемо ще одну типове завдання, Що носить більше алгебраїчний характер і традиційно включається до курсу лінійної алгебри. Вона настільки поширена, що заслуговує на окремий топік:

Довести, що 3 вектори утворюють базис тривимірного простору
та знайти координати 4-го вектора в даному базисі

Приклад 8

Дано вектори. Показати, що вектори утворюють базис тривимірного простору та знайти координати вектора у цьому базисі.

Рішення: Спочатку розбираємось з умовою За умовою дано чотири вектори, і, як бачите, вони вже мають координати в деякому базисі. Який це базис – нас не цікавить. А цікавить така річ: три вектори цілком можуть утворювати новий базис. І перший етап повністю збігається з рішенням Прикладу 6, необхідно перевірити, чи вектори справді лінійно незалежні:

Обчислимо визначник, складений координат векторів :

, Отже, вектори лінійно незалежні і утворюють базис тривимірного простору.

! Важливо : координати векторів обов'язковозаписуємо у стовпцівизначника, а не в рядки. Інакше буде плутанина у подальшому алгоритмі розв'язання.

Система векторів називається лінійно залежною, якщо існують такі числа , серед яких хоча б одне відмінно від нуля, що виконується рівність. >.

Якщо ж ця рівність виконується тільки в тому випадку, коли всі , то система векторів називається лінійно незалежною.

Теорема.Система векторів буде лінійно залежноютоді і лише тоді, коли хоча б один із її векторів є лінійною комбінацією інших.

приклад 1.Багаточлен є лінійною комбінацією багаточленів. Багаточлени становлять лінійно незалежну систему, так як багаточлен https: //pandia.ru/text/78/624/images/image012_44.gif" width="129" height="24">.

приклад 2.Система матриць , , https://pandia.ru/text/78/624/images/image016_37.gif" width="51" є лінійно незалежною, так як лінійна комбінація дорівнює нульовій матриці тільки в тому випадку, коли https://pandia.ru/text/78/624/images/image019_27.gif" width="69" height="21"> /images/image022_26.gif" width="40" лінійно залежною.

Рішення.

Складемо лінійну комбінацію даних векторів https://pandia.ru/text/78/624/images/image023_29.gif" 22">.

Прирівнюючи однойменні координати рівних векторів, отримуємо https://pandia.ru/text/78/624/images/image027_24.gif" width="289"

Остаточно отримаємо

і

Система має єдине тривіальне рішеннятому лінійна комбінація даних векторів дорівнює нулю тільки у випадку, коли всі коефіцієнти дорівнюють нулю. Тому система векторів лінійно незалежна.

приклад 4.Вектори лінійно незалежні. Якими будуть системи векторів

a).;

b).?

Рішення.

a).Складемо лінійну комбінацію та прирівняємо її до нуля

Використовуючи властивості операцій з векторами в лінійному просторі, перепишемо останню рівність у вигляді

Так як вектори лінійно незалежні, то коефіцієнти повинні бути дорівнюють нулю, тобто gif.

Отримана система рівнянь має єдине тривіальне рішення .

Оскільки рівність (*) виконується тільки при - лінійно незалежні;

b).Складемо рівність https://pandia.ru/text/78/624/images/image039_17.gif" (**)

Застосовуючи аналогічні міркування, отримаємо

Вирішуючи систему рівнянь методом Гауса, отримаємо

або

Остання система має нескінченна безлічрішень https://pandia.ru/text/78/624/images/image044_14.gif" width="149" height="24 src=">. Таким чином, існує, ненульовий набір коефіцієнтів, для якого виконується рівність (**) . Отже, система векторів - Лінійно залежна.

Приклад 5Система векторів лінійно незалежна, а система векторів лінійно залежна. gif. (***)

У рівності (***) . Дійсно, система була б лінійно залежною.

Зі співвідношення (***) отримуємо або Позначимо .

Отримаємо

Завдання для самостійного вирішення (в аудиторії)

1. Система, що містить нульовий вектор, є лінійно залежною.

2. Система, що складається з одного вектора а, лінійно залежна тоді і лише тоді, коли, а=0.

3. Система, що складається з двох векторів, лінійно залежна тоді і тільки тоді, коли вектори пропорційні (тобто один з них виходить з іншого множенням на число).

4. Якщо до лінійно залежної системидодати вектор, то вийде лінійно залежна система.

5. Якщо з лінійно незалежної системивидалити вектор, отримана система векторів лінійна незалежна.

6. Якщо система Sлінійно незалежна, але стає лінійно залежною при додаванні вектора b, то вектор bлінійно виражається через вектори системи S.

c).Система матриць , у просторі матриць другого порядку.

10. Нехай система векторів a,b,cвекторного простору лінійно незалежно. Доведіть лінійну незалежність наступних системвекторів:

a).a+b, b, c.

b).a+https://pandia.ru/text/78/624/images/image062_13.gif" width="15" height="19">–довільне число

c).a+b, a+c, b+c.

11. Нехай a,b,c– три вектори на площині, у тому числі можна скласти трикутник. Чи ці вектори будуть лінійно залежні?

12. Дано два вектори a1=(1, 2, 3, 4),a2=(0, 0, 0, 1). Підібрати ще два чотиривимірні вектори a3 таa4так, щоб система a1,a2,a3,a4була лінійно незалежною .

Щоб перевірити чи є система векторів лінійно-залежної, необхідно скласти лінійну комбінацію цих векторів і перевірити, чи може вона бути рана нулю, якщо хоч один коефіцієнт дорівнює нулю.

Випадок 1. Система векторів задана векторами

Складаємо лінійну комбінацію

Ми отримали однорідну систему рівнянь. Якщо вона має ненульове рішення, то визначник повинен дорівнювати нулю. Складемо визначник та знайдемо його значення.

Визначник дорівнює нулю, отже вектори лінійно залежні.

Випадок 2. Система векторів задана аналітичними функціями:

a)
, якщо тотожність вірна, значить система лінійно залежна.

Складемо лінійну комбінацію.

Необхідно перевірити, чи існують такі a, b, c (хоча б одна з яких не дорівнює нулю) при яких цей вираз дорівнює нулю.

Запишемо гіперболічні функції

,
тоді

тоді лінійна комбінація векторів набуде вигляду:

Звідки
, Візьмемо, наприклад, тоді лінійна комбінація дорівнює нулю, отже, система лінійно залежна.

Відповідь: система лінійно залежна.

b)
складемо лінійну комбінацію

Лінійна комбінація векторів повинна дорівнювати нулю для будь-яких значень x.

Перевіримо для окремих випадків.

Лінійна комбінація векторів дорівнює нулю, тільки якщо всі коефіцієнти дорівнюють нулю.

Отже система лінійно не залежна.

Відповідь: система лінійно не залежить.

5.3. Знайти якийсь базис та визначити розмірність лінійного простору рішень.

Сформуємо розширену матрицю і наведемо її до виду трапеції методом Гаусса.

Щоб отримати який-небудь базис підставимо довільні значення:

Отримаємо інші координати

Відповідь:

5.4. Знайти координати вектора X у базисі, якщо він заданий у базисі.

Знаходження координат вектора у новому базисі зводиться до вирішення системи рівнянь

Спосіб 1. Знаходження за допомогою матриці переходу

Складемо матрицю переходу

Знайдемо вектор у новому базисі за формулою

Знайдемо зворотну матрицю та виконаємо множення

,

Спосіб 2. Знаходження шляхом складання системи рівнянь.

Складемо базисні вектори з коефіцієнтів базису

,
,

Знаходження вектора у новому базисі має вигляд

, де dце заданий вектор x.

Отримане рівняння можна вирішити будь-яким способом, відповідь буде аналогічною.

Відповідь: вектор у новому базисі
.

5.5. Нехай x = (x 1 , x 2 , x 3 ) . Чи є лінійними такі перетворення.

Складемо матриці лінійних операторів із коефіцієнтів заданих векторів.



Перевіримо властивість лінійних операцій кожної матриці лінійного оператора.

Ліву частину знайдемо множенням матриці Ана вектор

Праву частину знайдемо, помноживши заданий вектор на скаляр
.

Ми бачимо, що
отже, перетворення перестав бути лінійним.

Перевіримо інші вектори.

, Перетворення не є лінійним.

, Перетворення є лінійним.

Відповідь: Ах– не лінійне перетворення, Вх- Не лінійне, Сх- Лінійне.

Примітка.Можна виконати це завдання набагато простіше, уважно подивившись на задані вектори. У Ахми бачимо, що є доданки, які не містять елементи хщо не могло бути отримано в результаті лінійної операції. У Вхє елемент хтретього ступеня, що також не могло бути отримано множенням на вектор х.

5.6. Дано x = { x 1 , x 2 , x 3 } , Ax = { x 2 x 3 , x 1 , x 1 + x 3 } , Bx = { x 2 , 2 x 3 , x 1 } . Виконати задану операцію: ( A ( B A )) x .

Випишемо матриці лінійних операторів.


Виконаємо операцію над матрицями

При множенні отриманої матриці на Х отримаємо

Відповідь: