Біографії Характеристики Аналіз

Калькулятор ірраціональних рівнянь. Розв'язання рівнянь із двома змінними

У цьому відео ми розберемо цілий комплект лінійних рівнянь, які вирішуються по тому самому алгоритму — тому й вони і називаються найпростішими.

Спочатку визначимося: що таке лінійне рівняння і яке з них називати найпростішим?

Лінійне рівняння - таке, в якому є лише одна змінна, причому виключно в першому ступені.

Під найпростішим рівнянням мається на увазі конструкція:

Всі інші лінійні рівняння зводяться до найпростіших за допомогою алгоритму:

  1. Розкрити дужки, якщо вони є;
  2. Перенести доданки, що містять змінну, в один бік від знаку рівності, а доданки без змінної - в іншу;
  3. Навести подібні доданки ліворуч і праворуч від знаку рівності;
  4. Розділити отримане рівняння на коефіцієнт при змінній $x$.

Зрозуміло, цей алгоритм допомагає який завжди. Справа в тому, що іноді після всіх цих махінацій коефіцієнт при змінній $x$ виявляється нульовим. У цьому випадку можливі два варіанти:

  1. Рівняння взагалі немає рішень. Наприклад, коли виходить щось на кшталт $0\cdot x=8$, тобто. ліворуч стоїть нуль, а праворуч — число, відмінне від нуля. У відео нижче ми розглянемо відразу кілька причин, через які можлива така ситуація.
  2. Рішення – усі числа. Єдиний випадок, коли таке можливе – рівняння звелося до конструкції $0\cdot x=0$. Цілком логічно, що який би $x$ ми підставили, однаково вийде «нуль дорівнює нулю», тобто. правильне числове рівність.

А тепер подивимося, як все це працює на прикладі реальних завдань.

Приклади розв'язування рівнянь

Сьогодні ми займаємось лінійними рівняннями, причому лише найпростішими. Взагалі, під лінійним рівнянням мається на увазі всяка рівність, що містить у собі рівно одну змінну, і вона йде лише в першому ступені.

Вирішуються такі конструкції приблизно однаково:

  1. Насамперед необхідно розкрити дужки, якщо вони є (як у нашому останньому прикладі);
  2. Потім звести такі
  3. Нарешті, усамітнити змінну, тобто. все, що пов'язано зі змінною - доданки, в яких вона міститься - перенести в один бік, а все, що залишиться без неї, перенести в інший бік.

Потім, як правило, потрібно навести подібні з кожної сторони отриманої рівності, а після цього залишиться лише розділити на коефіцієнт при «ікс», і ми отримаємо остаточну відповідь.

Теоретично це виглядає красиво і просто, проте на практиці навіть досвідчені учні старших класів можуть припускатися образливих помилок у досить простих лінійних рівняннях. Зазвичай помилки допускаються або під час розкриття дужок, або за підрахунком «плюсів» і «мінусів».

Крім того, буває так, що лінійне рівняння взагалі не має рішень, або так, що рішенням є вся числова пряма, тобто. будь-яке число. Ці тонкощі ми й розберемо на сьогоднішньому уроці. Але почнемо ми, як ви вже зрозуміли, із найпростіших завдань.

Схема вирішення найпростіших лінійних рівнянь

Для початку давайте ще раз напишу всю схему вирішення найпростіших лінійних рівнянь:

  1. Розкриваємо дужки, якщо вони є.
  2. Усамітнюємо змінні, тобто. все, що містить «ікси», переносимо в один бік, а без «іксів» — в інший.
  3. Наводимо подібні доданки.
  4. Поділяємо все на коефіцієнт при «ікс».

Зрозуміло, ця схема працює не завжди, у ній є певні тонкощі та хитрощі, і зараз ми з ними й познайомимося.

Вирішуємо реальні приклади простих лінійних рівнянь

Завдання №1

На першому кроці від нас потрібно розкрити дужки. Але їх у цьому прикладі немає, тому пропускаємо цей етап. На другому кроці нам потрібно усамітнити змінні. Зверніть увагу: йдеться лише про окремі доданки. Давайте запишемо:

Наводимо подібні доданки ліворуч і праворуч, але тут це вже зроблено. Тому переходимо до четвертого кроку: розділити на коефіцієнт:

\[\frac(6x)(6)=-\frac(72)(6)\]

Ось ми й отримали відповідь.

Завдання №2

У цьому завдання ми можемо спостерігати дужки, тому давайте розкриємо їх:

І ліворуч і праворуч ми бачимо приблизно ту саму конструкцію, але давайте діяти за алгоритмом, тобто. усамітнюємо змінні:

Наведемо такі:

При якому корінні це виконується. Відповідь: за будь-яких. Отже, можна записати, що $x$ - будь-яке число.

Завдання №3

Третє лінійне рівняння вже цікавіше:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут є кілька дужок, проте вони ні на що не множаться, просто перед ними стоять різні знаки. Давайте розкриємо їх:

Виконуємо другий уже відомий нам крок:

\[-x+x+2x=15-6-12+3\]

Порахуємо:

Виконуємо останній крок - ділимо все на коефіцієнт при "ікс":

\[\frac(2x)(x)=\frac(0)(2)\]

Що необхідно пам'ятати при вирішенні лінійних рівнянь

Якщо відволіктися від надто простих завдань, то я хотів би сказати таке:

  • Як я говорив вище, далеко не кожне лінійне рівняння має рішення - іноді коріння просто немає;
  • Навіть якщо коріння є, серед них може затесатися нуль — нічого страшного в цьому немає.

Нуль - таке ж число, як і інші, не варто його дискримінувати або вважати, що якщо у вас вийшов нуль, то ви щось зробили неправильно.

Ще одна особливість пов'язана з розкриттям дужок. Зверніть увагу: коли перед ними стоїть мінус, то ми його прибираємо, однак у дужках знаки міняємо на протилежні. А далі ми можемо розкривати її за стандартними алгоритмами: ми отримаємо те, що бачили у викладках вище.

Розуміння цього простого факту дозволить вам не допускати дурних і образливих помилок у старших класах, коли виконання подібних дій вважається самим собою зрозумілим.

Розв'язання складних лінійних рівнянь

Перейдемо до складніших рівнянь. Тепер конструкції стануть складнішими і при виконанні різних перетворень виникне квадратична функція. Однак не варто цього боятися, тому що якщо за задумом автора ми вирішуємо лінійне рівняння, то в процесі перетворення всі одночлени, які містять квадратичну функцію, обов'язково скоротяться.

Приклад №1

Очевидно, що насамперед потрібно розкрити дужки. Давайте це зробимо дуже обережно:

Тепер займемося самотою:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Наводимо такі:

Очевидно, що дане рівняння рішень немає, тому у відповіді так і запишемо:

\[\varnothing\]

або коріння немає.

Приклад №2

Виконуємо самі дії. Перший крок:

Перенесемо все, що зі змінною, вліво, а без неї вправо:

Наводимо такі:

Очевидно, що дане лінійне рівняння не має рішення, тому так і запишемо:

\[\varnothing\],

або коріння немає.

Нюанси рішення

Обидва рівняння повністю розв'язані. На прикладі цих двох виразів ми ще раз переконалися, що навіть у найпростіших лінійних рівняннях все може бути не так просто: коріння може бути або одне, або жодне, або нескінченно багато. У нашому випадку ми розглянули два рівняння, в обох коренів просто немає.

Але я хотів би звернути вашу увагу на інший факт: як працювати з дужками і як їх розкривати, якщо перед ними стоїть знак мінус. Розглянемо цей вираз:

Перш ніж розкривати, потрібно перемножити все на ікс. Зверніть увагу: множиться кожне окреме доданок. Усередині стоїть два доданки - відповідно, два доданки і множиться.

І тільки після того, коли ці, начебто, елементарні, але дуже важливі та небезпечні перетворення виконані, можна розкривати дужку з погляду того, що після неї стоїть знак «мінус». Так, так: тільки зараз, коли перетворення виконані, ми згадуємо, що перед дужками стоїть знак мінус, а це означає, що все, що вниз, просто змінює знаки. При цьому самі дужки зникають і, що найголовніше, передній мінус теж зникає.

Так само ми чинимо і з другим рівнянням:

Я не випадково звертаю увагу на ці дрібні, начебто, незначні факти. Тому що рішення рівнянь - це завжди послідовність елементарних перетворень, де невміння чітко і грамотно виконувати прості дії призводить до того, що учні старших класів приходять до мене і знову вчаться вирішувати такі прості рівняння.

Зрозуміло, настане день, і ви відточите ці навички до автоматизму. Вам вже не доведеться щоразу виконувати стільки перетворень, ви все писатимете в один рядок. Але поки ви тільки вчитеся, потрібно писати кожну дію окремо.

Вирішення ще більш складних лінійних рівнянь

Те, що ми зараз вирішуватимемо, вже складно назвати найпростішими завдання, проте сенс залишається тим самим.

Завдання №1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Давайте перемножимо всі елементи у першій частині:

Давайте виконаємо усамітнення:

Наводимо такі:

Виконуємо останній крок:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Ось наша остаточна відповідь. І, незважаючи на те, що у нас у процесі вирішення виникали коефіцієнти з квадратичною функцією, проте вони взаємно знищилися, що робить рівняння саме лінійним, а не квадратним.

Завдання №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте акуратно виконаємо перший крок: множимо кожен елемент із першої дужки на кожен елемент із другої. Усього має вийти чотири нових доданків після перетворень:

А тепер акуратно виконаємо множення в кожному доданку:

Перенесемо доданки з «іксом» вліво, а без вправо:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Наводимо такі складові:

Ми знову отримали остаточну відповідь.

Нюанси рішення

Найважливіше зауваження щодо цих двох рівнянь полягає в наступному: як тільки ми починаємо множити дужки, в яких знаходиться більш ніж воно доданок, то виконується це за таким правилом: ми беремо перший доданок з першої і перемножуємо з кожним елементом з другого; потім беремо другий елемент з першої та аналогічно перемножуємо з кожним елементом з другої. У результаті в нас вийде чотири доданки.

Про алгебраїчну суму

На останньому прикладі я хотів би нагадати учням, що таке сума алгебри. У класичній математиці під $1-7$ ми маємо на увазі просту конструкцію: з одиниці віднімаємо сім. В алгебрі ж ми маємо на увазі під цим наступне: до «одиниця» ми додаємо інше число, а саме «мінус сім». Цим сума алгебри відрізняється від звичайної арифметичної.

Як тільки при виконанні всіх перетворень, кожного додавання та множення ви почнете бачити конструкції, аналогічні вищеописаним, ніяких проблем в алгебрі при роботі з багаточленами та рівняннями у вас просто не буде.

Насамкінець давайте розглянемо ще пару прикладів, які будуть ще складнішими, ніж ті, які ми щойно розглянули, і для їх вирішення нам доведеться дещо розширити наш стандартний алгоритм.

Розв'язання рівнянь із дробом

Для вирішення подібних завдань до нашого алгоритму доведеться додати ще один крок. Але для початку я нагадаю наш алгоритм:

  1. Розкрити дужки.
  2. Усамітнити змінні.
  3. Навести такі.
  4. Розділити на коефіцієнт.

На жаль, цей прекрасний алгоритм при всій його ефективності виявляється не цілком доречним, коли маємо дроби. А в тому, що ми побачимо нижче, у нас і ліворуч, і праворуч в обох рівняннях є дріб.

Як працювати у цьому випадку? Та все дуже просто! Для цього в алгоритм потрібно додати ще один крок, який можна зробити як перед першою дією, так і після нього, а саме позбутися дробів. Таким чином, алгоритм буде наступним:

  1. Позбутися дробів.
  2. Розкрити дужки.
  3. Усамітнити змінні.
  4. Навести такі.
  5. Розділити на коефіцієнт.

Що означає «позбутися дробів»? І чому це можна виконувати як після, так і перед першим стандартним кроком? Насправді у разі всі дроби є числовими за знаменником, тобто. скрізь у знаменнику стоїть просто число. Отже, якщо ми обидві частини рівняння домножимо на це число, ми позбудемося дробів.

Приклад №1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Давайте позбудемося дробів у цьому рівнянні:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Зверніть увагу: на «чотири» множиться один раз, тобто. якщо у вас дві дужки, це не означає, що кожну з них потрібно множити на чотири. Запишемо:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Тепер розкриємо:

Виконуємо усамітнення змінної:

Виконуємо приведення подібних доданків:

\ -4x = -1 \ left | :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Ми одержали остаточне рішення, переходимо до другого рівняння.

Приклад №2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Тут виконуємо ті самі дії:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Завдання вирішено.

Ось, власне, і все, що я сьогодні хотів розповісти.

Ключові моменти

Ключові висновки такі:

  • Знати алгоритм розв'язання лінійних рівнянь.
  • Вміння розкривати дужки.
  • Не варто переживати, якщо десь у вас з'являються квадратичні функції, швидше за все, у процесі подальших перетворень вони скоротяться.
  • Коріння в лінійних рівняннях, навіть найпростіших, буває трьох типів: один єдиний корінь, вся числова пряма є коренем, коріння немає взагалі.

Сподіваюся, цей урок допоможе вам освоїти нескладну, але дуже важливу для подальшого розуміння математики тему. Якщо щось незрозуміло, заходьте на сайт, вирішуйте приклади, представлені там. Залишайтеся з нами, на вас чекає ще багато цікавого!

Застосування рівнянь поширене у житті. Вони використовуються в багатьох розрахунках, будівництві споруд та навіть спорті. Рівняння людина використовувала ще в давнину і відтоді їх застосування лише зростає. Ступінні чи показові рівняння називають рівняння, у яких змінні перебувають у ступенях, а основою є число. Наприклад:

Рішення показового рівняння зводиться до 2 досить простих дій:

1. Потрібно перевірити чи однакові підстави у рівняння справа і зліва. Якщо підстави неоднакові, шукаємо варіанти на вирішення цього прикладу.

2. Після того, як підстави стануть однаковими, прирівнюємо ступені та вирішуємо отримане нове рівняння.

Допустимо, дано показове рівняння наступного виду:

Починати розв'язання цього рівняння слід з аналізу підстави. Підстави різні - 2 і 4, а для вирішення нам потрібно, щоб були однакові, тому перетворимо 4 за такою формулою -\[(a^n)^m = a^(nm):\]

Додаємо до вихідного рівняння:

Винесемо за дужки \

Виразимо \

Оскільки ступені однакові, відкидаємо їх:

Відповідь: \

Де можна вирішити показове рівняння онлайн вирішувачем?

Вирішити рівняння можна на нашому сайті https://сайт. Безкоштовний онлайн вирішувач дозволить вирішити рівняння онлайн будь-якої складності за лічені секунди. Все, що вам необхідно зробити – це просто ввести свої дані у вирішувачі. Також ви можете переглянути відео інструкцію та дізнатися, як вирішити рівняння на нашому сайті. А якщо у вас залишилися питання, ви можете задати їх у нашій групі Вконтакте http://vk.com/pocketteacher. Вступайте до нашої групи, ми завжди раді допомогти вам.

На етапі підготовки до заключного тестування учням старших класів необхідно підтягнути знання на тему «Показові рівняння». Досвід минулих років свідчить про те, що подібні завдання викликають у школярів певні труднощі. Тому старшокласникам, незалежно від рівня їх підготовки, необхідно ретельно засвоїти теорію, запам'ятати формули та зрозуміти принцип розв'язання таких рівнянь. Навчившись справлятися з цим видом завдань, випускники зможуть розраховувати на високі бали під час здачі ЄДІ з математики.

Готуйтеся до екзаменаційного тестування разом із «Шкілковим»!

При повторенні пройдених матеріалів багато учнів стикаються з проблемою пошуку необхідних вирішення рівнянь формул. Шкільний підручник не завжди знаходиться під рукою, а відбір необхідної інформації на тему в Інтернеті займає довгий час.

Освітній портал «Школкове» пропонує учням скористатися нашою базою знань. Ми реалізуємо новий метод підготовки до підсумкового тестування. Займаючись на нашому сайті, ви зможете виявити прогалини у знаннях та приділити увагу саме тим завданням, які викликають найбільші труднощі.

Викладачі «Школково» зібрали, систематизували та виклали весь необхідний для успішної здачі ЄДІ матеріал у максимально простій та доступній формі.

Основні визначення та формули представлені у розділі «Теоретична довідка».

Для кращого засвоєння матеріалу рекомендуємо попрактикуватися у виконанні завдань. Уважно перегляньте наведені на цій сторінці приклади показових рівнянь із рішенням, щоб зрозуміти алгоритм обчислення. Після цього починайте виконання завдань у розділі «Каталоги». Ви можете почати з найлегших завдань або одразу перейти до розв'язання складних показових рівнянь із кількома невідомими або . База вправ на нашому сайті постійно доповнюється та оновлюється.

Ті приклади з показниками, які викликали у вас складнощі, можна додати до «Вибраного». Так ви можете швидко знайти їх та обговорити рішення з викладачем.

Щоб успішно здати ЄДІ, займайтесь на порталі «Школкове» щодня!


Розберемо два види розв'язання систем рівняння:

1. Рішення системи шляхом підстановки.
2. Рішення системи методом почленного складання (віднімання) рівнянь системи.

Для того, щоб вирішити систему рівнянь методом підстановкипотрібно слідувати простому алгоритму:
1. Висловлюємо. З будь-якого рівняння виражаємо одну змінну.
2. Підставляємо. Підставляємо в інше рівняння замість вираженої змінної отримане значення.
3. Вирішуємо отримане рівняння з однією змінною. Знаходимо рішення системи.

Для того щоб вирішити систему методом почленного складання (віднімання)потрібно:
1.Вибрати змінну у якої робитимемо однакові коефіцієнти.
2.Складаємо або віднімаємо рівняння, в результаті отримуємо рівняння з однією змінною.
3. Вирішуємо отримане лінійне рівняння. Знаходимо рішення системи.

Рішенням системи є точки перетину графіків функції.

Розглянемо докладно з прикладів рішення систем.

Приклад №1:

Вирішимо методом підстановки

Вирішення системи рівнянь методом підстановки

2x+5y=1 (1 рівняння)
x-10y=3 (2 рівняння)

1. Висловлюємо
Видно що у другому рівнянні є змінна x з коефіцієнтом 1, звідси виходить що найлегше висловити змінну x з другого рівняння.
x=3+10y

2.Після того, як висловили підставляємо в перше рівняння 3+10y замість змінної x.
2(3+10y)+5y=1

3. Вирішуємо отримане рівняння з однією змінною.
2(3+10y)+5y=1 (розкриваємо дужки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Рішенням системи рівняння є точки перетинів графіків, отже нам потрібно знайти x і у, тому що точка перетину складається з x і y.Знайдемо x, в першому пункті де ми виражали туди підставляємо y.
x=3+10y
x=3+10*(-0,2)=1

Точки прийнято записувати першому місці пишемо змінну x, але в другому змінну y.
Відповідь: (1; -0,2)

Приклад №2:

Вирішимо методом почленного складання (віднімання).

Рішення системи рівнянь шляхом складання

3x-2y=1 (1 рівняння)
2x-3y=-10 (2 рівняння)

1.Вибираємо змінну, припустимо, вибираємо x. У першому рівнянні у змінної x коефіцієнт 3, у другому 2. Потрібно зробити коефіцієнти однаковими, при цьому маємо право домножити рівняння чи розділити будь-яке число. Перше рівняння примножуємо на 2, а друге на 3 і отримаємо загальний коефіцієнт 6.

3x-2y = 1 | * 2
6x-4y = 2

2x-3y=-10 | *3
6x-9y=-30

2.З першого рівняння віднімемо друге, щоб позбавитися від змінної x.Вирішуємо лінійне рівняння.
__6x-4y=2

5y = 32 | :5
y=6,4

3. Знаходимо x. Підставляємо у будь-яке з рівнянь знайдений y, допустимо у перше рівняння.
3x-2y=1
3x-2 * 6,4 = 1
3x-12,8 = 1
3x = 1 +12,8
3x = 13,8 |: 3
x = 4,6

Точкою перетину буде x = 4,6; y=6,4
Відповідь: (4,6; 6,4)

Хочеш готуватися до іспитів безкоштовно? Репетитор онлайн безкоштовно. Без жартів.

Рівняння

Як розв'язувати рівняння?

У цьому розділі ми згадаємо (чи вивчимо – вже кому як) найпростіші рівняння. Отже, що таке рівняння? Говорячи людською мовою, це якийсь математичний вираз, де є знак рівності та невідомий. Яке, як правило, позначається буквою «х». Вирішити рівняння- це знайти такі значення ікса, які при підстановці в вихідневираз, дадуть нам вірну тотожність. Нагадаю, що тотожність – це вираз, який не викликає сумніву навіть у людини, абсолютно не обтяженої математичними знаннями. Типу 2 = 2, 0 = 0, ab = ab і т.д. То як вирішувати рівняння?Давайте розберемося.

Рівняння бувають всякі (ось здивував, так?). Але все їхнє нескінченне різноманіття можна розбити всього на чотири типи.

4. Всі інші.)

Усіх інших, зрозуміло, найбільше, так...) Сюди входять і кубічні, і показові, і логарифмічні, і тригонометричні та інші. З ними ми у відповідних розділах щільно попрацюємо.

Відразу скажу, що іноді й рівняння перших трьох типів так накрутить, що й не впізнаєш їх… Нічого. Ми навчимося їх розмотувати.

І навіщо нам ці чотири типи? А потім, що лінійні рівняннявирішуються одним способом, квадратнііншим, дробові раціональні - третім,а іншіне наважуються зовсім! Ну, не те, щоб зовсім ніяк не наважуються, це я даремно математику образив.) Просто для них існують свої спеціальні прийоми і методи.

Але для будь-яких (повторюю - для будь-яких!) рівнянь є надійна та безвідмовна основа для вирішення. Працює скрізь і завжди. Ця основа – звучить страшно, але штука дуже проста. І дуже (дуже!)важлива.

Власне, рішення рівняння і складається з цих перетворень. на 99%. Відповідь на питання: " Як розв'язувати рівняння?" лежить, саме, у цих перетвореннях. Натяк зрозумілий?)

Тотожні перетворення рівнянь.

У будь-яких рівнянняхдля знаходження невідомого треба перетворити та спростити вихідний приклад. Причому так, щоб при зміні зовнішнього вигляду суть рівняння не змінювалася.Такі перетворення називаються тотожнимичи рівносильними.

Зазначу, що ці перетворення відносяться саме до рівнянь.У математиці ще є тотожні перетворення виразів.Це інша тема.

Зараз ми з вами повторимо всі базові тотожні перетворення рівнянь.

Базові тому, що їх можна застосовувати до будь-якимрівнянням – лінійним, квадратним, дробовим, тригонометричним, показовим, логарифмічним тощо. і т.п.

Перше тотожне перетворення: до обох частин будь-якого рівняння можна додати (забрати) будь-яке(але те саме!) число чи вираз (зокрема і вираз із невідомим!). Суть рівняння від цього змінюється.

Ви, між іншим, постійно користувалися цим перетворенням, тільки думали, що переносите якісь складові з однієї частини рівняння до іншої зі зміною знака. Типу:

Справа знайома, переносимо двійку вправо, і отримуємо:

Насправді ви відібраливід обох частин рівняння двійку. Результат виходить той самий:

х+2 - 2 = 3 - 2

Перенесення доданків ліворуч-праворуч зі зміною знака є просто скорочений варіант першого тотожного перетворення. І навіщо нам такі глибокі знання? - Запитайте ви. В рівняннях нізащо. Переносьте, заради бога. Тільки знак не забувайте міняти. А ось у нерівностях звичка до перенесення може і в глухий кут поставити….

Друге тотожне перетворення: обидві частини рівняння можна помножити (розділити) на те саме відмінне від нулячисло чи вираз. Тут вже з'являється зрозуміле обмеження: на нуль множити безглуздо, а ділити взагалі не можна. Це перетворення ви використовуєте, коли вирішуєте щось круте, типу

Зрозуміла справа, х= 2. А як ви його знайшли? Підбором? Чи просто осяяло? Щоб не підбирати і не чекати осяяння, потрібно зрозуміти, що ви просто поділили обидві частини рівнянняна 5. При розподілі лівої частини (5х) п'ятірка скоротилася, залишився чистий ікс. Чого нам і потрібно. А при розподілі правої частини (10) на п'ять, вийшла, звісно, ​​двійка.

От і все.

Смішно, але ці два (всього два!) тотожні перетворення лежать в основі рішення всіх рівнянь математики.Ось як! Чи має сенс подивитися на прикладах, що і як, правда?)

Приклади тотожних перетворень рівнянь. Основні проблеми.

Почнемо з першогототожного перетворення. Перенесення вліво-вправо.

Приклад для молодших.)

Припустимо, треба вирішити таке рівняння:

3-2х = 5-3х

Згадуємо заклинання: "з іксами - вліво, без іксів - вправо!"Це заклинання - інструкція із застосування першого тотожного перетворення.) Який вираз з іксом у нас справа? ? Відповідь неправильна! Праворуч у нас - ! Мінустри ікс! Отже, при перенесенні вліво, символ зміниться на плюс. Вийде:

3-2х +3х = 5

Так, ікси зібрали в купку. Займемося числами. Зліва стоїть трійка. З яким знаком? Відповідь "з ніякою" не приймається!) Перед трійкою дійсно нічого не намальовано. А це означає, що перед трійкою стоїть плюс.Так уже математики домовились. Нічого не написано, отже, плюс.Отже, у праву частину трійка перенесеться з мінусом.Отримаємо:

-2х +3х = 5-3

Залишилися дрібниці. Зліва – привести подібні, праворуч – порахувати. Відразу виходить відповідь:

У цьому прикладі вистачило одного тотожного перетворення. Друге не знадобилося. Ну і добре.)

Приклад для старших.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.