Біографії Характеристики Аналіз

Показник заломлення світла формули. Абсолютний показник заломлення та його зв'язок з відносним показником заломлення

Закон заломлення світла. Абсолютний та відносний показники (коефіцієнти) заломлення. Повне внутрішнє відображення

Закон заломлення світлабуло встановлено досвідченим шляхом у XVII столітті. При переході світла з одного прозорого середовища в інший напрямок світла може змінюватися. Зміна напряму світла межі різних середовищ називається заломленням світла. Завдання заломлення відбувається зміну форми предмета, що здається. (Приклад: ложка в склянці з водою). Закон заломлення світла: На межі 2ух середовищ заломлений промінь лежить у площині падіння і утворює з нормальню до межі розділу, відновленої в точці падіння, кут приломлення, такий, що: = 1-падіння, 2 відбиття, n-показник заломлення (ф. Снеліуса) - відносний показникПоказник заломлення променя, що падає на середовище з безповітряного простору, називається його абсолютним показником заломлення.Кут падіння, при якому заломлений промінь починає ковзати по межі розділу двох середовищ без переходу в більш щільне оптично середовище – граничний кут повного внутрішнього відбиття. Повне внутрішнє відображення- внутрішнє відбиток, за умови, що кут падіння перевершує певний критичний кут. При цьому падаюча хвиля відбивається повністю, і значення коефіцієнта відображення перевершує його найбільші значення для полірованих поверхонь. Коефіцієнт відбиття при повному внутрішньому відбитку залежить від довжини хвилі. В оптиці це явище спостерігається широкого спектра електромагнітного випромінювання, включаючи рентгенівський діапазон. У геометричній оптиці явище пояснюється рамках закону Снелла. Враховуючи, що кут заломлення не може перевищувати 90°, отримуємо, що при вугіллі падіння, синус якого більший за відношення меншого коефіцієнта заломлення до більшого коефіцієнта, електромагнітна хвиля повинна повністю відображатися в першу середу. Приклад: Яскравий блиск багатьох природних кристалів, а особливо - огранених дорогоцінних і напівдорогоцінних каменів пояснюється повним внутрішнім відображенням, в результаті якого кожен промінь, що увійшов у кристал, утворює велику кількість досить яскравих променів, що вийшли, пофарбованих в результаті дисперсії.

ДО ЛЕКЦІЇ №24

«ІНСТРУМЕНТАЛЬНІ МЕТОДИ АНАЛІЗУ»

РЕФРАКТОМЕТРІЯ.

Література:

1. В.Д. Пономарьов «Аналітична хімія» 1983 246-251

2. А.А. Іщенко «Аналітична хімія» 2004 стор 181-184

РЕФРАКТОМЕТРІЯ.

Рефрактометрія є одним із найпростіших фізичних методів аналізу з витратою мінімальної кількості аналізованої речовини і проводиться за дуже короткий час.

Рефрактометрія- метод, заснований на явище заломлення чи рефракції, тобто. зміні напряму поширення світла при переході з одного середовища до іншого.

Заломлення, як і поглинання світла, є наслідком взаємодії його з середовищем. Слово рефрактометрія означає вимір заломлення світла, яке оцінюється за величиною показника заломлення.

Розмір показника заломлення nзалежить

1) від складу речовин та систем,

2) від того, у якій концентрації і які молекули зустрічає світловий промінь своєму шляху, т.к. під впливом світла молекули різних речовин поляризуються по-різному. Саме на цій залежності й ґрунтується рефрактометричний метод.

Метод цей має цілу низку переваг, у результаті він знайшов широке застосування як і хімічних дослідженнях, і при контролі технологічних процесів.

1) Вимірювання показники заломлення є дуже простим процесом, який здійснюється точно і за мінімальних витрат часу і кількості речовини.

2) Зазвичай рефрактометри забезпечують точність до 10% при визначенні показника заломлення світла та вмісту аналізованої речовини

Метод рефрактометрії застосовують контролю автентичності і чистоти, ідентифікації індивідуальних речовин, визначення будови органічних і неорганічних сполук щодо розчинів. Рефрактометрія знаходить застосування визначення складу двокомпонентних розчинів і потрійних систем.

Фізичні основи методу

ПОКАЗНИК ЗАЛОМЛЕННЯ.

Відхилення світлового променя від початкового напрямку при переході його з одного середовища в інше тим більше, чим більша різниця у швидкостях поширення світла у двох



даних середовищах.

Розглянемо заломлення світлового променя на межі будь-яких двох прозорих середовищ I та II (див. рис.). Умовимося, що середовище II має більшу заломлюючу здатність і, отже, n 1і n 2- Показує заломлення відповідних середовищ. Якщо середовище I - це вакуум і повітря, то відношення sin кута падіння світлового променя до sin кута заломлення дасть величину відносного показника заломлення n отн. Розмір n отн. може бути так само визначено як відношення показників заломлення середовищ, що розглядаються.

n отн. = ----- = ---

Розмір показника заломлення залежить від

1) природи речовин

Природу речовини у разі визначає ступінь деформируемости його молекул під впливом світла - ступінь поляризуемости. Чим інтенсивніша поляризуемість, тим сильніше заломлення світла.

2)довжини хвилі падаючого світла

Вимірювання показника заломлення проводиться за довжини хвилі світла 589,3 нм (лінія D спектру натрію).

Залежність показника заломлення від довжини світлової хвилі називається дисперсією. Чим менша довжина хвилі, тим значніше заломлення. Тому промені різних довжин хвиль переломлюються по-різному.

3)температури , При якій проводиться вимір. Обов'язковою умовою визначення показника заломлення є дотримання температурного режиму. Зазвичай, визначення виконується при 20±0,3 0 С.

У разі підвищення температури величина показника заломлення зменшується, при зниженні - збільшується.

Поправку на вплив температури розраховують за такою формулою:

n t =n 20 + (20-t) · 0,0002, де

n t –Бувай задавачем заломлення при даній температурі,

n 20 -показник заломлення при 20 0 С

Вплив температури на значення показників заломлення газів та рідких тіл пов'язаний з величинами їх коефіцієнтів об'ємного розширення. Об'єм всіх газів і рідких тіл при нагріванні збільшується, щільність зменшується і, отже, зменшується показник

Показник заломлення, виміряний при 20 0 С та довжині хвилі світла 589,3 нм, позначається індексом n D 20

Залежність показника заломлення гомогенної двокомпонентної системи від її стану встановлюється експериментально шляхом визначення показника заломлення для ряду стандартних систем (наприклад, розчинів), вміст компонентів у яких відомий.

4) концентрації речовини у розчині.

Для багатьох водних розчинів речовин показники заломлення при різних концентраціях та температурах надійно виміряні, і в цих випадках можна користуватися довідковими рефрактометричними таблицями. Практика показує, що при вмісті розчиненої речовини, що не перевищує 10-20%, поряд з графічним методом у багатьох випадках можна користуватися лінійним рівнянням типу:

n=n про +FC,

n-показник заломлення розчину,

- показник заломлення чистого розчинника,

C- Концентрація розчиненої речовини, %

F-емпіричний коефіцієнт, величина якого знайдена

шляхом визначення коефіцієнтів заломлення розчинів відомої концентрації.

РЕФРАКТОМЕТРИ.

Рефрактометрами називають прилади, що служать вимірювання величини показника заломлення. Існує 2 види цих приладів: рефрактометр типу Аббе та типу Пульфріха. І в тих і в ін. Виміри засновані на визначенні величини граничного кута заломлення. Насправді застосовуються рефрактометри різних систем: лабораторний-РЛ, універсальний РЛУ та інших.

Показник заломлення дистильованої води n 0 =1,33299, практично цей показник приймає як відлікового як n 0 =1,333.

Принцип роботи на рефрактометрах ґрунтується на визначенні показника заломлення методом граничного кута (кут повного відображення світла).

Ручний рефрактометр

Рефрактометр Аббе

Процеси, пов'язані зі світлом, є важливою складовою фізики і оточують нас у нашому повсякденному житті повсюдно. Найважливіші в цій ситуації є закони відображення та заломлення світла, на яких ґрунтується сучасна оптика. Заломлення світла є важливим складником сучасної науки.

Ефект спотворення

Ця стаття розповість вам, що є явищем заломлення світла, а також як виглядає закон заломлення і що з нього випливає.

Основи фізичного явища

При падінні променя на поверхню, яка розділяється двома прозорими речовинами, що мають різну оптичну густину (наприклад, різне скло або у воді), частина променів буде відображена, а частина – проникне у другу структуру (наприклад, піде поширюватися у воді чи склі). При переході з одного середовища до іншого для променя характерна зміна свого напряму. Це і є явище заломлення світла.
Особливо добре відображення та заломлення світла видно у воді.

Ефект спотворення у воді

Дивлячись на речі, що у воді, вони здаються спотвореними. Особливо це дуже помітно на межі між повітрям та водою. Візуально здається, що підводні предмети трохи відхилені. У фізичному явищі, що описується, якраз і криється причина того, що у воді всі об'єкти здаються спотвореними. При попаданні променів на скло цей ефект менш помітний.
Заломлення світла є фізичне явище, яке характеризується зміною напрямку руху сонячного променя в момент переміщення з одного середовища (структури) в інше.
Для покращення розуміння даного процесу, розглянемо приклад попадання променя з повітря у воду (аналогічно до скла). Під час проведення перпендикуляра вздовж межі розділу можна виміряти кут заломлення та повернення світлового променя. Цей показник (кут заломлення) змінюватиметься при проникненні потоку у воду (всередину скла).
Зверніть увагу! Під даним параметром розуміється кут, який утворює перпендикуляр, проведений до розділу двох речовин при проникненні променя першої структури в другу.

Проходження променя

Цей показник характерний й інших середовищ. Встановлено, що цей показник залежить від густини речовини. Якщо падіння променя відбувається з менш щільною в щільнішу структуру, то кут створюваного спотворення буде більшим. А якщо навпаки – то менше.
При цьому зміна нахилу падіння також позначиться на даному показнику. Але відношення між ними не залишається незмінним. У той же час, відношення їхніх синусів залишиться постійною величиною, яку відображає така формула: sinα / sinγ = n, де:

  • n – стала величина, яка описана для кожної конкретної речовини (повітря, скла, води і т.д.). Тому, якою буде дана величина можна визначити за спеціальними таблицями;
  • α – кут падіння;
  • γ – кут заломлення.

Для визначення цього фізичного явища і було створено закон заломлення.

Фізичний закон

Закон заломлення світлових потоків дає змогу визначити характеристики прозорих речовин. Сам закон складається з двох положень:

  • перша частина. Промінь (падаючий, змінений) та перпендикуляр, який був відновлений у точці падіння на кордоні, наприклад, повітря та води (скла тощо), будуть розташовуватися в одній площині;
  • друга частина. Показник співвідношення синуса кута падіння до синуса цього ж кута, що утворився під час переходу кордону, буде величиною постійної.

Опис закону

При цьому в момент виходу променя з другої структури в першу (наприклад, при проходженні світлового потоку з повітря через скло і назад в повітря) також буде виникати ефект спотворення.

Важливий параметр для різних об'єктів

Основний показник у цій ситуації — це співвідношення синуса кута падіння до аналогічного параметра, але спотворення. Як випливає із закону, описаного вище, цей показник являє собою постійну величину.
При цьому при зміні значення нахилу падіння така ж ситуація буде характерна і для аналогічного показника. Цей параметр має велике значення, оскільки є невід'ємною характеристикою прозорих речовин.

Показники для різних об'єктів

Завдяки цьому параметру можна досить ефективно розрізняти види скла, а також різноманітні дорогоцінні камені. Також він важливий визначення швидкості переміщення світла у різних середовищах.

Зверніть увагу! Найвища швидкість світлового потоку – у вакуумі.

При переході з однієї речовини в інші його швидкість буде зменшуватися. Наприклад, у алмазу, який має найбільший показник заломлюваності, швидкість поширення фотонів буде в 2,42 рази вищою, ніж у повітря. У воді вони поширюватимуться повільніше в 1,33 рази. Для різних видів скла цей параметр коливається в діапазоні від 1,4 до 2,2.

Зверніть увагу! Деякі скла мають показник заломлення 2,2, що дуже близько до алмазу (2,4). Тому не завжди вдасться відрізнити скло від реального алмазу.

Оптична густина речовин

Світло може проникати через різні речовини, що характеризуються різними показниками оптичної густини. Як ми вже говорили раніше, використовуючи цей закон можна визначити характеристику густини середовища (структури). Чим щільнішою вона буде, тим з меншою швидкістю в ній поширюватиметься світло. Наприклад, скло або вода будуть більш оптично щільними, ніж повітря.
Крім того, що цей параметр є постійною величиною, він ще й відображає відношення швидкості світла у двох речовинах. Фізичний зміст можна відобразити у вигляді наступної формули:

Цей показник каже, як змінюється швидкість поширення фотонів під час переходу з однієї речовини до іншого.

Ще один важливий показник

При переміщенні світлового потоку через прозорі об'єкти можлива його поляризація. Вона спостерігається під час проходження світлового потоку від діелектричних ізотропних середовищ. Поляризація виникає під час проходження фотонів через скло.

Ефект поляризації

Часткова поляризація спостерігається, коли кут падіння світлового потоку на межі двох діелектриків відрізнятиметься від нуля. Ступінь поляризації залежить від того, якими були кути падіння (закон Брюстера).

Повноцінне внутрішнє відображення

Завершуючи наш невеликий екскурс, ще необхідно розглянути такий ефект як повноцінне внутрішнє відображення.

Явище повноцінного відображення

Для появи даного ефекту необхідно збільшення кута падіння світлового потоку в момент його переходу з більш щільного менш щільне середовище в межі розділу між речовинами. У ситуації, коли цей параметр перевищуватиме певне граничне значення, тоді фотони, що падають на межу цього розділу, будуть повністю відображатися. Власне, це і буде наше шукане явище. Без нього було неможливо зробити волоконну оптику.

Висновок

Практичне застосування особливостей поведінки світлового потоку дали дуже багато, створивши різноманітні технічні пристрої для покращення нашого життя. При цьому світло відкрило перед людством далеко не всі свої можливості та його практичний потенціал ще повністю не реалізовано.

Як зробити паперовий світильник своїми руками Як перевірити працездатність світлодіодної стрічки

Заломлення світла- явище, у якому промінь світла, переходячи з одного середовища до іншого, змінює напрямок межі цих середовищ.

Заломлення світла відбувається за таким законом:
Падаючий і заломлений промені та перпендикуляр, проведений до межі розділу двох середовищ у точці падіння променя, лежать в одній площині. Відношення синуса кута падіння до синуса кута заломлення є постійна величина для двох середовищ:
,
де α - кут падіння,
β - кут заломлення,
n - постійна величина, яка залежить від кута падіння.

При зміні кута падіння змінюється кут заломлення. Чим більший кут падіння, тим більший кут заломлення.
Якщо світло йде з середовища оптично менш щільного в більш щільне середовище, то кут заломлення завжди менше кута падіння: β < α.
Промінь світла, спрямований перпендикулярно до межі поділу двох середовищ, проходить з одного середовища до іншого без заломлення.

абсолютний показник заломлення речовини- величина, що дорівнює відношенню фазових швидкостей світла (електромагнітних хвиль) у вакуумі та в даному середовищі n=c/v
Величина n, що входить до закону заломлення, називається відносним показником заломлення для пари середовищ.

Величина n є відносний показник заломлення середовища по відношенню до середовища А, а n" = 1/n є відносний показник заломлення середовища А по відношенню до середовища.
Ця величина за інших рівних умов більша одиниці при переході променя з середовища більш щільного в середовище менш щільного, і менше одиниці при переході променя з середовища менш щільного в середовище більш щільного (наприклад, з газу або з вакууму в рідину або тверде тіло). Є винятки з цього правила, і тому прийнято називати середовище оптично більш менш щільним, ніж інше.
Промінь, що падає з безповітряного простору на поверхню якого-небудь середовища, переломлюється сильніше, ніж при падінні на неї з іншого середовища А; показник заломлення променя, що падає на середовище безповітряного простору, називається його абсолютним показником заломлення.

(Абсолютний – щодо вакууму.
Відносний - щодо будь-якої іншої речовини (того ж повітря, наприклад).
Відносний показник двох речовин є відношення їх абсолютних показників.

Повне внутрішнє відображення- внутрішнє відбиток, за умови, що кут падіння перевершує певний критичний кут. При цьому падаюча хвиля відбивається повністю, і значення коефіцієнта відображення перевершує його найбільші значення для полірованих поверхонь. Коефіцієнт відбиття при повному внутрішньому відбитку залежить від довжини хвилі.

В оптиці це явище спостерігається широкого спектра електромагнітного випромінювання, включаючи рентгенівський діапазон.

У геометричній оптиці явище пояснюється рамках закону Снелла. Враховуючи, що кут заломлення не може перевищувати 90°, отримуємо, що при вугіллі падіння, синус якого більший за відношення меншого показника заломлення до більшого показника, електромагнітна хвиля повинна повністю відображатися в першу середу.

Відповідно до хвильової теорії явища, електромагнітна хвиля все ж таки проникає в друге середовище - там поширюється так звана «неоднорідна хвиля», яка експоненційно згасає і енергію з собою не забирає. Характерна глибина проникнення неоднорідної хвилі у друге середовище порядку довжини хвилі.

Закони заломлення світла.

З усього сказаного укладаємо:
1 . На межі розділу двох середовищ різної оптичної щільності промінь світла при переході з одного середовища до іншого змінює свій напрямок.
2. При переході променя світла в середу з більшою оптичною щільністю кут заломлення менший від кута падіння; при переході променя світла з оптично більш щільного середовища в середовище менш щільне кут заломлення більше кута падіння.
Заломлення світла супроводжується відображенням, причому зі збільшенням кута падіння яскравість відбитого пучка зростає, а заломленого слабшає. Це можна побачити, проводячи досвід, зображений на малюнку. Отже, відбитий пучок забирає із собою тим більше світлової енергії, чим більше кут падіння.

Нехай MN-кордон розділу двох прозорих середовищ, наприклад, повітря та води, АТ-падаючий промінь, ОВ- Заломлений промінь, - Кут падіння, - Кут заломлення, - Швидкість поширення світла в першому середовищі, - Швидкість поширення світла в другому середовищі.

Світло за своєю природою поширюється у різних середовищах із різними швидкостями. Чим щільніше середовище, тим нижча швидкість поширення у ній світла. Була встановлена ​​відповідна міра, що стосується як щільності матеріалу, так і швидкості поширення світла в цьому матеріалі. Цей захід назвали показником заломлення. Для будь-якого матеріалу показник заломлення вимірюється щодо швидкості розповсюдження світла у вакуумі (вакуум часто називають вільним простором). Наступна формула визначає це ставлення.

Що показник заломлення матеріалу, то він щільніше. Коли промінь світла проникає з одного матеріалу до іншого (з іншим показником заломлення), кут заломлення відрізнятиметься від кута падіння. Промінь світла, що проникає в середу з меншим показником заломлення, виходитиме з кутом, більшим за кут падіння. Промінь світла, що проникає в середу з великим показником заломлення, виходитиме з кутом, меншим за кут падіння. Це показано на рис. 3.5.

Рис. 3.5.а. Промінь, що проходить із середовища з високим N 1 у середу з низьким N 2
Рис. 3.5.б. Промінь, що проходить із середовища з низьким N 1 у середу з високим N 2

В даному випадку 1 є кутом падіння, а 2 - кутом заломлення. Нижче перераховані деякі типові показники заломлення.

Цікаво відзначити, що для рентгенівських променів показник заломлення скла завжди менше, ніж для повітря, тому вони при проходженні з повітря в скло відхиляють убік від перпендикуляра, а не перпендикуляра, як світлові промені.