Біографії Характеристики Аналіз

Похідна функції y x lnx дорівнює. Похідна натурального логарифму та логарифму на основі a

Доказ та виведення формул похідної натурального логарифму та логарифму на підставі a. Приклади обчислення похідних від ln 2x, ln 3x та ln nx. Доказ формули похідної логарифму n-го порядку шляхом математичної індукції.

Виведення формул похідних натурального логарифму та логарифму на підставі a

Похідна натурального логарифму від x дорівнює одиниці, поділеній на x:
(1) (ln x)′ =.

Похідна логарифма на основі a дорівнює одиниці, поділеній на змінну x, помножену на натуральний логарифм від a :
(2) (log a x)′ =.

Доведення

Нехай є деяке позитивне число, що не дорівнює одиниці. Розглянемо функцію, яка залежить від змінної x , яка є логарифмом на підставі:
.
Ця функція визначена за . Знайдемо її похідну за змінною x. За визначенням, похідна є такою межею:
(3) .

Перетворимо цей вислів, щоб звести його до відомих математичних властивостей та правил. Для цього нам потрібно знати такі факти:
а)Властивості логарифму. Нам знадобляться такі формули:
(4) ;
(5) ;
(6) ;
Б)Безперервність логарифму та властивість меж для безперервної функції:
(7) .
Тут - деяка функція, у якої існує межа і ця межа позитивна.
в)Значення другої чудової межі:
(8) .

Застосовуємо ці факти до нашої межі. Спочатку перетворимо алгебраїчне вираз
.
Для цього застосуємо властивості (4) та (5).

.

Скористаємося властивістю (7) та другою чудовою межею (8):
.

І, нарешті, застосуємо властивість (6):
.
Логарифм на підставі eназивається натуральним логарифмом. Він позначається так:
.
Тоді;
.

Тим самим ми отримали формулу (2) похідної логарифму.

Похідна натурального логарифму

Ще раз випишемо формулу похідної логарифму на підставі a:
.
Ця формула має найпростіший вид для натурального логарифму, для якого . Тоді
(1) .

Через таку простоту, натуральний логарифм дуже широко використовується в математичному аналізі та інших розділах математики, пов'язаних з диференціальним обчисленням. Логарифмічні функції з іншими основами можна виразити через натуральний логарифм, використовуючи властивість (6):
.

Похідну логарифму з основи можна знайти з формули (1), якщо винести постійну за знак диференціювання:
.

Інші способи підтвердження похідної логарифму

Тут ми припускаємо, що нам відома формула похідної експоненти:
(9) .
Тоді ми можемо вивести формулу похідної натурального логарифму з огляду на те, що логарифм є зворотною функцією до експоненти.

Доведемо формулу похідної натурального логарифму, застосувавши формулу похідної зворотної функції:
.
У нашому випадку . Зворотною функцією до натурального логарифму є експонент:
.
Її похідна визначається за такою формулою (9). Змінні можна позначити будь-якою літерою. У формулі (9) замінимо змінну x на y:
.
Оскільки , то
.
Тоді
.
Формулу доведено.


Тепер доведемо формулу похідної натурального логарифму за допомогою правила диференціювання складної функції. Оскільки функції і є зворотними одна до одної, то
.
Диференціюємо це рівняння по змінній x:
(10) .
Похідна від ікса дорівнює одиниці:
.
Застосовуємо правило диференціювання складної функції:
.
Тут. Підставимо в (10):
.
Звідси
.

приклад

Знайти похідні від ln 2x, ln 3xі ln nx.

Рішення

Вихідні функції мають схожий вигляд. Тому ми знайдемо похідну від функції y = ln nx. Потім підставимо n = 2 та n = 3 . І, тим самим, отримаємо формули для похідних від ln 2xі ln 3x .

Отже, шукаємо похідну від функції
y = ln nx .
Уявімо цю функцію як складну функцію, що складається з двох функцій:
1) Функції, яка залежить від змінної: ;
2) Функції, яка залежить від змінної: .
Тоді вихідна функція складена з функцій та:
.

Знайдемо похідну від функції змінної x:
.
Знайдемо похідну від функції змінної :
.
Застосовуємо формулу похідної складної функції.
.
Тут ми підставили.

Отже, ми знайшли:
(11) .
Ми, що похідна залежить від n . Цей результат є цілком природним, якщо перетворити вихідну функцію, застосовуючи формулу логарифму від твору:
.
– це постійна. Її похідна дорівнює нулю. Тоді за правилом диференціювання суми маємо:
.

Відповідь

; ; .

Похідна логарифма модуля x

Знайдемо похідну від ще однієї дуже важливої ​​функції - натурального логарифму від модуля x:
(12) .

Розглянемо випадок. Тоді і функція має вигляд:
.
Її похідна визначається за формулою (1):
.

Тепер розглянемо випадок. Тоді і функція має вигляд:
,
де.
Але похідну цієї функції ми також знайшли у наведеному вище прикладі. Вона не залежить від n і дорівнює
.
Тоді
.

Об'єднуємо ці два випадки в одну формулу:
.

Відповідно, для логарифму на підставі a маємо:
.

Похідні вищих порядків натурального логарифму

Розглянемо функцію
.
Ми знайшли її похідну першого порядку:
(13) .

Знайдемо похідну другого порядку:
.
Знайдемо похідну третього порядку:
.
Знайдемо похідну четвертого порядку:
.

Можна помітити, що похідна n-го порядку має вигляд:
(14) .
Доведемо це методом математичної індукції.

Доведення

Підставимо у формулу (14) значення n = 1:
.
Оскільки , то за n = 1 , Формула (14) справедлива.

Припустимо, що формула (14) виконується за n = k . Доведемо, що з цього випливає, що формула справедлива за n = k + 1 .

Справді, за n = k маємо:
.
Диференціюємо по змінній x:

.
Отже, ми отримали:
.
Ця формула збігається з формулою (14) за n = k + 1 . Таким чином, з припущення, що формула (14) справедлива за n = k випливає, що формула (14) справедлива за n = k + 1 .

Тому формула (14) для похідної n-го порядку справедлива для будь-яких n .

Похідні вищих порядків логарифму на основі a

Щоб знайти похідну n-го порядку від логарифму на підставі a потрібно виразити його через натуральний логарифм:
.
Застосовуючи формулу (14), знаходимо n-ю похідну:
.

Визначення.Нехай функція \(y = f(x) \) визначена в деякому інтервалі, що містить у собі точку \(x_0 \). Дамо аргументу приріст (Delta x) таке, щоб не вийти з цього інтервалу. Знайдемо відповідне збільшення функції \(\Delta y \) (при переході від точки \(x_0 \) до точки \(x_0 + \Delta x \)) і складемо відношення \(\frac(\Delta y)(\Delta x) \). Якщо існує межа цього відношення при \(\Delta x \rightarrow 0 \), то вказану межу називають похідної функції\(y=f(x) \) у точці \(x_0 \) і позначають \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Для позначення похідної часто використовують символ y". Зазначимо, що y" = f(x) - це нова функція, але, природно, пов'язана з функцією y = f(x), визначена у всіх точках x, в яких існує вказана вище межа . Цю функцію називають так: похідна функції у = f(x).

Геометричний зміст похідноїполягає у наступному. Якщо до графіку функції у = f(x) у точці з абсцисою х=a можна провести дотичну, непаралельну осі y, то f(a) виражає кутовий коефіцієнт дотичної:
\(k = f"(a) \)

Оскільки \(k = tg(a) \), то вірна рівність \(f"(a) = tg(a) \).

А тепер витлумачимо визначення похідної з погляду наближених рівностей. Нехай функція \(y = f(x) \) має похідну в конкретній точці \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Це означає, що біля точки х виконується наближена рівність \(\frac(\Delta y)(\Delta x) \approx f"(x) \), тобто \(\Delta y \approx f"(x) \cdot \Delta x \). Змістовний зміст отриманої наближеної рівності полягає в наступному: збільшення функції «майже пропорційно» до збільшення аргументу, причому коефіцієнтом пропорційності є значення похідної в заданій точці х. Наприклад, для функції \(y = x^2 \) справедливо наближена рівність \(\Delta y \approx 2x \cdot \Delta x \). Якщо уважно проаналізувати визначення похідної, ми виявимо, що у ньому закладено алгоритм її знаходження.

Сформулюємо його.

Як знайти похідну функції у = f (x)?

1. Зафіксувати значення \(x \), знайти \(f(x) \)
2. Дати аргументу \(x \) збільшення \(\Delta x \), перейти в нову точку \(x+ \Delta x \), знайти \(f(x+ \Delta x) \)
3. Знайти збільшення функції: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Скласти відношення \(\frac(\Delta y)(\Delta x) \)
5. Обчислити $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ця межа і є похідною функцією в точці x.

Якщо функція у = f(x) має похідну в точці х, її називають диференційованою в точці х. Процедуру знаходження похідної функції у = f(x) називають диференціюваннямфункції у = f(x).

Обговоримо таке питання: як пов'язані між собою безперервність та диференційність функції у точці.

Нехай функція у = f(x) диференційована у точці х. Тоді до графіку функції в точці М(х; f(x)) можна провести дотичну, причому, нагадаємо, кутовий коефіцієнт дотичної дорівнює f"(x). Такий графік не може «розриватися» у точці М, тобто функція зобов'язана бути безперервною у точці х.

Це були міркування "на пальцях". Наведемо більш строгу міркування. Якщо функція у = f(x) диференційована в точці х, то виконується наближена рівність \(\Delta y \approx f"(x) \cdot \Delta x \). Якщо в цій рівності \(\Delta x \) спрямувати до нулю, то й \(\Delta y \) прагнутиме до нуля, а це і є умова безперервності функції в точці.

Отже, якщо функція диференційована у точці х, вона і безперервна у цій точці.

Зворотне твердження не так. Наприклад: функція у = | х | безперервна скрізь, зокрема у точці х = 0, але щодо графіку функції в «точці стику» (0; 0) не існує. Якщо деякій точці до графіку функції не можна провести дотичну, то цій точці немає похідна.

Ще один приклад. Функція \(y=\sqrt(x) \) безперервна на всій числовій прямій, у тому числі в точці х = 0. І дотична до графіка функції існує в будь-якій точці, у тому числі в точці х = 0. Але в цій точці дотична збігається з віссю у, тобто перпендикулярна до осі абсцис, її рівняння має вигляд х = 0. Кутового коефіцієнта у такої прямої немає, значить, не існує і \(f"(0) \)

Отже, ми познайомилися з новою властивістю функції - диференціювання. А як за графіком функції можна дійти невтішного висновку про її диференційованості?

Відповідь фактично отримано вище. Якщо деякій точці до графіку функції можна провести дотичну, не перпендикулярну осі абсцис, то цій точці функція диференційована. Якщо у певній точці дотична до графіку функції немає чи вона перпендикулярна осі абсцис, то цій точці функція не диференційована.

Правила диференціювання

Операція знаходження похідної називається диференціюванням. За виконання цієї операції часто доводиться працювати з приватними, сумами, творами функцій, і навіть з «функціями функцій», тобто складними функціями. Виходячи з визначення похідної, можна вивести правила диференціювання, що полегшують роботу. Якщо C - постійне число і f = f (x), g = g (x) - деякі функції, що диференціюються, то справедливі наступні правила диференціювання:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Похідна складної функції:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблиця похідних деяких функцій

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Операція відшукання похідної називається диференціюванням.

В результаті вирішення задач про відшукання похідних у найпростіших (і не дуже простих) функцій за визначенням похідноїяк межі відношення збільшення до збільшення аргументу з'явилися таблиця похідних і точно визначені правила диференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функцій знаходимо у таблиці похідних, а формули похідних твору, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинусу
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна робота
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твори і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладів на ці похідні - у статті"Похідна твори та приватного функцій " .

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У разі доданку її похідна дорівнює нулю, а разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапі вивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студент цієї помилки вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в якому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка - механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами.

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття " Похідна суми дробів зі ступенями та корінням ".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням".

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричні функції, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій".

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значення похідної квадратного кореня отримуємо:

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .