Біографії Характеристики Аналіз

Реактивний рух визначення. Реактивний насос личинки бабки-коромисла

У небо злітають багатотонні космічні кораблі, а в морських водах спритно лавірують прозорі, драглисті медузи, каракатиці та восьминоги - що між ними спільного? Виявляється, в обох випадках для переміщення використовується принцип реактивного руху. Саме цій темі і присвячено нашу сьогоднішню статтю.

Зазирнемо в історію

Найкращі перші достовірні відомості про ракети належать до XIII століття.Вони застосовувалися індусами, китайцями, арабами та європейцями в бойових діях як бойова та сигнальна зброя. Потім були цілі століття майже повного забуття цих пристроїв.

У Росії ідея використання реактивного двигуна відродилася завдяки роботам революціонера-народовольця Миколи Кібальчича. Сидячи в царських катівнях, він розробив російський проект реактивного двигуна та літальний апарат для людей. Кибальчич був страчений, а його проект довгі роки припадав пилом в архівах царської охранки.

Основні ідеї, креслення та розрахунки цієї талановитої та мужньої людини отримали подальший розвиток у працях К. Е. Ціолковського, який запропонував використовувати їх для міжпланетних повідомлень. З 1903 по 1914 він публікує ряд робіт, де переконливо доводить можливість використання реактивного руху для дослідження космічного простору і обґрунтовує доцільність використання багатоступінчастих ракет.

Багато наукових розробок Ціолковського і до сьогодні застосовуються в ракетобудуванні.

Біологічні ракети

Як взагалі виникла ідея переміщатися, відштовхуючись від власного реактивного струменя?Можливо, пильно спостерігаючи за морськими мешканцями, мешканці прибережних зон помітили, як це відбувається у тваринному світі.

Наприклад, морський гребінецьпереміщається за рахунок реактивної сили водного струменя, що викидається з раковини при швидкому стисканні її стулок. Але йому ніколи не наздогнати найшвидших плавців - кальмарів.

Їхні ракетоподібні тіла мчать хвостом вперед, викидаючи зі спеціальної лійки, запасену воду. переміщуються за тим самим принципом, видавлюючи воду скороченням свого прозорого бані.

Природа обдарувала «реактивним двигуном» та рослину під назвою «шалений огірок».Коли його плоди повністю дозрівають, у відповідь на найслабший дотик, він вистрілює клейковину з насінням. Сам плід при цьому відкидається у протилежний бік на відстань до 12 м!

Ні морським мешканцям, ні рослинам невідомі фізичні закони, які у основі цього способу пересування. Ми спробуємо в цьому розібратися.

Фізичні засади принципу реактивного руху

Спочатку звернемося до найпростішого досвіду. Надуємо гумову кулькуі, не зав'язуючи, відпустимо у вільний політ. Стрімкий рух кульки буде продовжуватися доти, поки струмінь повітря, що витікає з нього, буде досить сильним.

Для пояснення результатів цього досвіду нам слід звернутися до ІІІ закону, який стверджує, що два тіла взаємодіють із силами рівними за величиною та протилежними за напрямом.Отже, сила, з якою кулька впливає на струмені повітря, що вириваються з нього, дорівнює силі, з якою повітря відштовхує від себе кульку.

Перенесемо ці міркування на ракету. Ці пристрої на величезній швидкості викидають деяку частину своєї маси, внаслідок чого самі одержують прискорення у протилежному напрямку.

З погляду фізики цей процес чітко пояснюється законом збереження імпульсу.Імпульс - це добуток маси тіла на його швидкість (mv) Поки ракета у спокої, її швидкість та імпульс дорівнюють нулю. Якщо з неї викидається реактивний струмінь, то частина за законом збереження імпульсу, що залишилася, повинна придбати таку швидкість, щоб сумарний імпульс, як і раніше, дорівнював нулю.

Звернемося до формул:

m г v г + m р v р =0;

m г v г =- m р v р,

де m г v гімпульс створюваним струменем газів, m р v р імпульс, отриманий ракетою.

Знак мінус показує, що напрямок руху ракети та реактивного струменя протилежні.

Пристрій та принцип роботи реактивного двигуна

У техніці реактивні двигуни рухають літаки, ракети, виводять на орбіти космічні апарати. Залежно від призначення вони мають різні пристрої. Але кожен з них має запас палива, камеру для його згоряння та сопло, що прискорює реактивний струмінь.

На міжпланетних автоматичних станціях обладнано також приладовий відсік та кабіни із системою життєзабезпечення для космонавтів.

Сучасні космічні ракети - це складні, багатоступінчасті літальні апарати, що використовують новітні досягнення інженерної думки. Після старту спочатку згоряє паливо в нижній щаблі, після чого вона відокремлюється від ракети, зменшуючи її загальну масу та збільшуючи швидкість.

Потім витрачається паливо на другому ступені і т. д. Нарешті, літальний апарат виводиться на задану траєкторію і починає свій самостійний політ.

Трохи помріємо

Великий мрійник і вчений К. Е. Ціолковський подарував майбутнім поколінням упевненість у тому, що реактивні двигуни дозволять людству вирватися за межі земної атмосфери та поринути у космос. Його передбачення справдилося. Місяць і навіть далекі комети успішно досліджуються космічними апаратами.

У космонавтиці використовують рідинні реактивні двигуни. Використовуючи як паливо нафтопродукти, але швидкості, які вдається отримати за їх допомогою, недостатні для дуже далеких перельотів.

Можливо, ви, наші дорогі читачі, станете свідками польотів землян в інші галактики на апаратах із ядерними, термоядерними чи іонними реактивними двигунами.

Якщо це повідомлення тобі стало в нагоді, буду рада бачити тебе

Реактивний рух у природі та техніці

РЕФЕРАТ З ФІЗИКИ


Реактивний рух- рух, що виникає при відділенні від тіла з деякою швидкістю будь-якої його частини.

Реактивна сила виникає без будь-якої взаємодії із зовнішніми тілами.

Застосування реактивного руху на природі

Багато хто з нас у своєму житті зустрічався під час купання в морі з медузами. Принаймні у Чорному морі їх цілком вистачає. Але мало хто думав, що й медузи для пересування користуються реактивним рухом. Крім того, саме так пересуваються і личинки бабок, і деякі види морського планктону. І найчастіше ККД морських безхребетних тварин при використанні реактивного руху набагато вище, ніж у техновинаходів.

Реактивний рух використовується багатьма молюсками – восьминогами, кальмарами, каракатицями. Наприклад, морський молюск-гребінець рухається вперед за рахунок реактивної сили струменя води, викинутої з раковини при різкому стисканні її стулок.

Восьминіг


Каракатиця

Каракатиця, як і більшість головоногих молюсків, рухається у воді в такий спосіб. Вона забирає воду в зяброву порожнину через бічну щілину і особливу вирву попереду тіла, а потім енергійно викидає струмінь води через вирву. Каракатиця направляє трубку вирви в бік або назад і стрімко видавлюючи з неї воду, може рухатися в різні боки.

Сальпа - морська тварина з прозорим тілом, під час руху приймає воду через передній отвір, причому вода потрапляє в широку порожнину, всередині якої по діагоналі натягнуті зябра. Як тільки тварина зробить великий ковток води, отвір закривається. Тоді поздовжні та поперечні м'язи сальпи скорочуються, все тіло стискається, і вода через задній отвір виштовхується назовні. Реакція струменя, що витікає, штовхає сальпу вперед.

Найбільший інтерес має реактивний двигун кальмара. Кальмар є найбільшим безхребетним мешканцем океанських глибин. Кальмари досягли найвищої досконалості у реактивній навігації. Вони навіть тіло своїми зовнішніми формами копіює ракету (чи краще сказати – ракета копіює кальмара, оскільки йому належить у цій справі безперечний пріоритет). При повільному переміщенні кальмар користується великим ромбоподібним плавцем, який періодично згинається. Для швидкого кидка він використовує реактивний двигун. М'язова тканина – мантія оточує тіло молюска з усіх боків, об'єм її порожнини становить майже половину об'єму тіла кальмару. Тварина засмоктує воду всередину мантійної порожнини, а потім різко викидає струмінь води через вузьке сопло і з швидкістю рухається поштовхами назад. При цьому всі десять щупалець кальмара збираються у вузол над головою, і він набуває обтічної форми. Сопло забезпечене спеціальним клапаном, і м'язи можуть його повертати, змінюючи напрямок руху. Двигун кальмара дуже економічний, він здатний розвивати швидкість до 60 – 70 км/год. (Деякі дослідники вважають, що навіть до 150 км/год!) Недарма кальмара називають "живою торпедою". Вигинаючи складені пучком щупальця вправо, вліво, вгору чи вниз, кальмар повертає у той чи інший бік. Оскільки таке кермо в порівнянні з самою твариною має дуже великі розміри, то достатньо його незначного руху, щоб кальмар, навіть на повному ходу, легко міг ухилитися від зіткнення з перешкодою. Різкий поворот керма – і плавець мчить вже у зворотний бік. Ось зігнув він кінець вирви назад і ковзає тепер головою вперед. Вигнув її праворуч - і реактивний поштовх відкинув його вліво. Але коли треба плисти швидко, лійка завжди стирчить прямо між щупальцями, і кальмар мчить хвостом уперед, як біг би рак – скорохід, наділений жвавістю скакуна.

Якщо поспішати не потрібно, кальмари і каракатиці плавають, ундулюючи плавцями, - мініатюрні хвилі пробігають по них спереду назад, і тварина граційно ковзає, зрідка підштовхуючи себе також і струменем води, викинутої з-під мантії. Тоді добре помітні окремі поштовхи, які отримує молюсок у момент виверження водяних струменів. Деякі головоногі можуть розвивати швидкість до п'ятдесяти п'яти кілометрів на годину. Прямих вимірів, здається, ніхто не робив, але про це можна судити за швидкістю і дальністю польоту кальмарів, що літають. І такі, виявляється, є таланти у рідні у спрутів! Найкращий пілот серед молюсків – кальмар стенотевтіс. Англійські моряки називають його – флайінг-сквід («літаючий кальмар»). Це невелика тварина розміром із оселедець. Він переслідує риб з такою стрімкістю, що нерідко вискакує з води, стрілою пролітаючи над її поверхнею. До цього прийому він вдається і рятуючи своє життя від хижаків – тунців та макрелів. Розвинувши у воді максимальну реактивну тягу, кальмар-пілот стартує у повітря та пролітає над хвилями понад п'ятдесят метрів. Апогей польоту живої ракети лежить так високо над водою, що кальмари, що літають, нерідко потрапляють на палуби океанських суден. Чотири-п'ять метрів – не рекордна висота, на яку здіймаються в небо кальмари. Іноді вони злітають ще вищими.

Англійський дослідник молюсків доктор Рис описав у науковій статті кальмара (довжиною всього 16 сантиметрів), який, пролетівши повітрям неабияку відстань, впав на місток яхти, що височіло над водою майже сім метрів.

Трапляється, що на корабель блискучим каскадом обрушується безліч кальмарів, що літають. Античний письменник Требіус Нігер розповів одного разу сумну історію про корабель, який нібито навіть затонув під вагою кальмарів, що літали, що впали на його палубу. Кальмари можуть злітати без розгону.

Восьминоги теж вміють літати. Французький натураліст Жан Верані бачив, як звичайний восьминіг розігнався в акваріумі і раптом задом наперед несподівано вискочив із води. Описавши в повітрі дугу завдовжки метрів за п'ять, він плюхнувся назад в акваріум. Набираючи швидкість для стрибка, восьминіг рухався не лише за рахунок реактивної тяги, а й гріб щупальцями.
Мішковаті восьминоги плавають, звичайно, гірше за кальмари, але в критичні хвилини і вони можуть показати рекордний для кращих спринтерів клас. Співробітники Каліфорнійського акваріума намагалися сфотографувати восьминога, який атакує краба. Спрут кидався на видобуток з такою швидкістю, що на плівці, навіть при зйомці на найбільших швидкостях, завжди виявлялися мастила. Значить, кидок тривав соті частки секунди! Зазвичай восьминоги плавають порівняно повільно. Джозеф Сайнл, який вивчав міграції спрутів, підрахував: восьминіг розміром півметра пливе морем із середньою швидкістю близько п'ятнадцяти кілометрів на годину. Кожен струмінь води, викинутий з лійки, штовхає його вперед (вірніше, назад, бо восьминіг пливе задом наперед) на два – два з половиною метри.

Реактивний рух можна зустріти у світі рослин. Наприклад, дозрілі плоди "шаленого огірка" при найлегшому дотику відскакують від плодоніжки, а з отвору, що утворився, з силою викидається клейка рідина з насінням. Сам огірок при цьому відлітає у протилежному напрямку до 12 м-коду.

Знаючи закон збереження імпульсу, можна змінювати власну швидкість переміщення у відкритому просторі. Якщо ви знаходитесь в човні і у вас є кілька важких каменів, то кидаючи каміння у певний бік ви рухатиметеся в протилежному напрямку. Те саме буде і в космічному просторі, але там для цього використовують реактивні двигуни.

Кожен знає, що постріл із рушниці супроводжується віддачею. Якби вага кулі дорівнювала б вазі рушниці, вони б розлетілися з однаковою швидкістю. Віддача відбувається тому, що маса газів, що відкидається, створює реактивну силу, завдяки якій може бути забезпечено рух як у повітрі, так і в безповітряному просторі. І чим більша маса і швидкість газів, що витікають, тим більшу силу віддачі відчуває наше плече, чим сильніша реакція рушниці, тим більша реактивна сила.

Застосування реактивного руху на техніці

Протягом багатьох століть людство мріяло про космічні польоти. Письменники-фантасти пропонували різні засоби для досягнення цієї мети. У XVII столітті з'явилася розповідь французького письменника Сірано де Бержерака про політ на Місяць. Герой цієї розповіді дістався Місяця в залізному візку, над яким він увесь час підкидав сильний магніт. Притягаючись до нього, віз підвищувався вище Землею, поки не досяг Місяця. А барон Мюнхгаузен розповідав, що забрався на Місяць стеблом боба.

Наприкінці першого тисячоліття нашої ери в Китаї винайшли реактивний рух, який наводив на дію ракети - бамбукові трубки, начинені порохом, вони також використовувалися як забава. Один із перших проектів автомобілів був також із реактивним двигуном і належав цей проект Ньютону

Автором першого світі проекту реактивного літального апарату, призначеного для польоту людини, був російський революціонер – народовець Н.І. Кібальчич. Його стратили 3 квітня 1881 р. за участь у замаху на імператора Олександра ІІ. Свій проект він розробив у в'язниці після смертного вироку. Кібальчич писав: “Я перебуваючи в ув'язненні, за кілька днів до своєї смерті я пишу цей проект. Я вірю в здійсненність моєї ідеї, і ця віра підтримує мене у моєму жахливому становищі…Я спокійно зустріну смерть, знаючи, що моя ідея не загине разом зі мною”.

Ідея використання ракет для космічних польотів була запропонована ще на початку нашого століття російським вченим Костянтином Едуардовичем Ціолковським. У 1903 року з'явилася друком стаття викладача калузької гімназії К.Э. Ціолковського "Дослідження світових просторів реактивними приладами". У цій роботі було найважливіше для космонавтики математичне рівняння, тепер відоме як “формула Ціолковського”, яке описувало рух тіла змінної маси. Надалі він розробив схему ракетного двигуна на рідкому паливі, запропонував багатоступінчасту конструкцію ракети, висловив ідею можливості створення цілих космічних міст на навколоземної орбіті. Він показав, що єдиний апарат, здатний подолати тяжкість - це ракета, тобто. апарат з реактивним двигуном, що використовує пальне та окислювач, що знаходяться на самому апараті.

Введение………………………………………………………………………….3

1. К.Э.Циолковский – основоположник теорії космічних польотів………..4

2. Реактивний двигун…………………………………………………………..5

3. Пристрій балістичної ракети……………………………………………7

3.1. Двигун балістичної ракети…………………………………………..8

3.2. Насоси…………………………………………………………………………9

3.4. Альтернатива газовими кермами……………………………………………..10

4. Стартова площадка……………………………………………………………..11

5. Траєкторія польоту……………………………………………………………..12

6 . Заключение……………………………………………………………………13

7. Список використаної литературы:…………………………………….14

8. Аркуш оцінювання.……………………………………………………………..15

Вступ

Я, учень 9 «В» класу Єгоров Дмитро В'ячеславович представляю вам свій реферат на тему: «Реактивний рух. Ракети». Я вважаю, що людство завжди мріяло про подорож до космосу. Різні засоби для досягнення цієї мети пропонували письменники - фантасти, вчені, мрійники. Але єдиного засобу, що знаходиться в розпорядженні людини, за допомогою якого можна подолати силу земного тяжіння і полетіти в космос за багато століть не зміг винайти жоден учений, жоден письменник-фантаст. Наприклад, герой оповідання французького письменника Сірано де Бержерака, написаного в XVII столітті, дістався Місяця, підкидаючи сильний магніт над залізним візком, в якому знаходився сам. Підвода все вище піднімалася над Землею, притягаючись до магніту, поки не досягла Місяця, барон Мюнхгаузен розповідав, що забрався на Місяць стеблом боба.

Цільмого реферату - це ознайомлення з наукою, яка в свою чергу і по сьогодні розвивається і створюється нові зразки ракетобудування.

ТемаНа даний час дуже поширена і цікава для вивчення учнів.

Я вважаю, що реферат справді зацікавить багатьох людей, оскільки ракетобудування стоїть на озброєнні нашої країни, а також поширена безпека від ворожої атаки.

1.К.Е.Ціолковський - основоположник теорії космічних польотів

Вперше мрію та прагнення багатьох людей вперше зміг наблизити до реальності російський учений Костянтин Едуардович Ціолковський (1857-1935), який показав, що єдиний апарат, здатний подолати силу тяжіння – це ракета, він вперше представив науковий доказ можливості використання ракети для польотів. , за межі земної атмосфери та інших планет Сонячної системи. Ракетою Ціолковський назвав апарат з реактивним двигуном, який використовує пальне і окислювач, що знаходяться на ньому.

2. Реактивний двигун

Реактивним двигуном називають двигун, здатний перетворити хімічну енергію палива в кінетичну енергію газового струменя, і придбати швидкість у зворотному напрямку.

На яких же принципах та фізичних законах ґрунтується дія реактивного двигуна?

Як відомо з курсу фізики, постріл із рушниці супроводжується віддачею. За законами Ньютона, куля і рушниця розлетілися б у різні боки з однаковою швидкістю, якби мали однакову масу. Маса газів, що відкидається, створює реактивну силу, завдяки якій може бути забезпечено рух, як у повітрі, так і в безповітряному просторі, так виникає віддача. Тим більшу силу віддачі відчуває наше плече, чим більша маса і швидкість газів, що витікають, і, отже, чим сильніша реакція рушниці, тим більша реактивна сила. Ці явища пояснюються законом збереження імпульсу:

  • векторна (геометрична) сума імпульсів тіл, що становлять замкнуту систему, залишається постійною за будь-яких рухів і взаємодій тіл системи.

Максимальну швидкість, яку може розвинути ракета, розраховують за формулою Ціолковського:

v max - максимальна швидкість ракети,

v 0 - початкова швидкість,

v r – швидкість закінчення газів із сопла,

m - початкова маса палива,

M – маса порожньої ракети.

Подана формула Ціолковського є фундаментом, на якому ґрунтується весь розрахунок сучасних ракет. Числом Ціолковського називають відношення маси палива до маси ракети наприкінці роботи двигуна – до ваги порожньої ракети.

Таким чином, отримали, що максимально досяжна швидкість ракети залежить насамперед від швидкості витікання газів із сопла. А швидкість закінчення газів сопла у свою чергу залежить від виду палива та температури газового струменя. Значить, чим вища температура, тим більша швидкість. Тоді для справжньої ракети потрібно підібрати саме калорійне паливо, що дає найбільшу кількість теплоти. За формулою видно, що ще швидкість ракети залежить від початкової і кінцевої маси ракети, від цього, яка частина її ваги посідає пальне, і яка – на марні (з погляду швидкості польоту) конструкції: корпус, механізми, тощо. буд.

Основний висновок з цієї формули Ціолковського для визначення швидкості космічної ракети полягає в тому, що в безповітряному просторі ракета розвине тим більшу швидкість, чим більша швидкість закінчення газів і чим більша кількість Ціолковського.

Представимо загалом сучасну ракету наддальньої дії.

Така ракета повинна бути багаторівневою. У її головній частині розміщується бойовий заряд, за приладами управління, баками і двигуном. Стартова вага ракети перевищує вагу корисного вантажу у 100-200 разів залежно від палива! Таким чином, справжня ракета має важити кілька сотень тонн, а в довжину має щонайменше досягати висоти десятиповерхового будинку. До конструкції ракети висувається низка вимог. Так необхідно, наприклад, щоб сила тяги проходила через центр тяжіння ракети. Ракета може відхилитися від заданого курсу або навіть почати обертальний рух, якщо не виконати зазначені умови.

Відновити правильний курс можна за допомогою керма. У розрідженому повітрі працюють газові керма, що відхиляють напрямок газового струменя, запропоновані Ціолковським. Аеродинамічні керма працюють при польоті ракети у щільному повітрі.

3.Влаштування балістичної ракети

3.1. Двигун балістичної ракети

Сучасні балістичні ракети переважно працюють на двигунах, які використовують рідке паливо. Як паливо зазвичай використовують гас, спирт, гідразин, анілін, а як окислювачі - азотну і хлорну кислоти, рідкий кисень і перекис водню. Найактивнішими окислювачами є фтор та рідкий озон, але вони застосовуються рідко через крайню вибухонебезпечність.

Двигун - найважливіший елемент ракети. Найважливіший елемент двигуна – камера згоряння та сопло. У камерах згоряння, через те, що температура згоряння палива доходить до 2500-3500 О С, повинні використовуватися особливо жароміцні матеріали та складні методи охолодження. Такі температури не витримують звичайні матеріали.

3.Влаштування балістичної ракети

3.2. Насоси

Дуже складні та інші агрегати. Наприклад, насоси, які повинні подавати окислювач та пальне до форсунок камери згоряння, вже в ракеті ФАУ-2, однією з перших, були здатні перекачувати 125 кг палива на секунду.

У ряді випадків замість звичайних балонів застосовують балони зі стисненим повітрям або якимось іншим газом, здатним витіснити пальне з баків і загнати його в камеру згоряння.

3.Влаштування балістичної ракети

3.3. Альтернатива газовим кермам

Газові доводиться робити з графіту або кераміки, тому вони дуже тендітні і ламкі, тому сучасні конструктори починають відмовлятися від застосування газових кермів, замінюючи їх кількома додатковими соплами або повертаючи найголовніше сопло. Справді, на початку польоту, при високій щільності повітря, швидкість ракети мала, тому керма погано керують, а там, де ракета набуває великої швидкості, мала щільність повітря.

На американській ракеті, побудованій за проектом "Авангард", двигун підвішений на шарнірах, і його можна відхиляти на 5-7 О.Потужність кожного наступного ступеня і час її дії менше, тому що кожен ступінь ракети працює в різних умовах, які і визначають її пристрій, тому і конструкція самої ракети може бути простіше.

4. Стартовий майданчик

Запуск балістичної ракети відбувається зі спеціального стартового пристрою. Зазвичай це ажурна металева щогла або навіть вежа, біля якої ракету збирають частинами підйомними кранами. Ділянки такої вежі розміщуються проти необхідних для перевірки та налагодження обладнання оглядових люків. Башта від'їжджає, коли ракету заправляють паливом.

5. Траєкторія польоту

Ракета стартує вертикально, а потім починає повільно нахилятися і незабаром описує майже еліптичну траєкторію. Більшість траєкторії польоту таких ракет лежить на висоті понад 1000 км над Землею, де опір повітря практично відсутній. Наближаючись до мети, атмосфера починає різко гальмувати рух ракети, у своїй її оболонка сильно нагрівається, а, якщо не вжити заходів, ракета може зруйнуватися, та її заряд – передчасно вибухнути.

6. Висновок

Представлений опис міжконтинентальної балістичної ракети застарів і відповідає рівню розвитку науки і техніки 60-х років, але через обмеженість доступу до сучасних наукових матеріалів відсутня можливість дати точний опис роботи сучасної міжконтинентальної балістичної ракети наддальнього радіусу дії. Незважаючи на це, у роботі були висвітлені загальні властивості, властиві всім ракетам. Робота також може бути цікавою для ознайомлення з історією розвитку та використання описаних ракет, ще допомогла мені більше дізнатися самому про ракетобудування.

7. Список використаної літератури

Дерябін В. М. Закони збереження у фізиці. - М.: Просвітництво, 1982.

Гельфер Я. М. Закони збереження. - М.: Наука, 1967.

Кузов До. Світ без форм. - М.: Світ, 1976.

Дитяча енциклопедія - М.: Видавництво АН СРСР, 1959.

http://ua.wikipedia.org/wiki/%D0%E0%EA%E5%F2%E0

http://yandex.ru/yandsearch?text=%D1%80%D0%B5%D0%B0%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D0 %B5%20%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%20%D1%80%D0%B0%D0%BA %D0%B5%D1%82%D1%8B&clid=2071982&lr=240

8. Аркуш оцінювання

1. Найлегше давалася інформація про застосування ракет, щоб дізнатися, як і з чого вони складаються, потрібно було пошукати в книжкових матеріалах. Робота далася легко та з цікавістю.

2. Також підтримую таку науку, як фізика. Багато явищ вона пояснює, а також це наше майбутнє ... Реферат вийшов чудово і все в зрозумілому вигляді, що навіть дуже сподобається матеріал подальшим учням.


Логіка природи є найдоступніша і найкорисніша логіка для дітей.

Костянтин Дмитрович Ушинський(03.03.1823-03.01.1871) - російський педагог, основоположник наукової педагогіки в Росії.

БІОФІЗИКА: РЕАКТИВНИЙ РУХ У ЖИВІЙ ПРИРОДІ

Пропоную читачам зелених сторінок заглянути в захоплюючий світ біофізикита познайомитися з основними принципами реактивного руху у живій природі. Сьогодні у програмі: медуза корнерот- Найбільша медуза Чорного моря, морські гребінці, підприємлива личинка бабки-коромисла, чудовий кальмар з його неперевершеним реактивним двигуномта чудові ілюстрації у виконанні радянського біолога та художника-анімаліста КондаковаМиколи Миколайовича.

За принципом реактивного руху в живій природі пересувається ціла низка тварин, наприклад медузи, морські молюски гребінці, личинки бабки-коромисла, кальмари, восьминоги, каракатиці... Познайомимося з деякими з них ближче;-)

Реактивний спосіб руху медуз

Медузи – одні з найдавніших та найчисельніших хижаків на нашій планеті!Тіло медузи на 98% складається з води та у значній частині складено з обводненої сполучної тканини. мезогліїфункціонує як скелет. Основу мезоглії становить білок колаген. Студентисте та прозоре тіло медузи формою нагадує дзвін або парасольку (в діаметрі від кількох міліметрів) до 2,5 м). Більшість медуз рухаються реактивним способом, виштовхуючи воду з парасольки порожнини.


Медузи Корнероти(Rhizostomae), загін кишковопорожнинних тварин класу сцифоїдних. Медузи ( до 65 сму діаметрі) позбавлені крайових щупалець. Краї рота витягнуті в ротові лопаті з численними складками, що зростаються між собою з утворенням вторинних ротових отворів. Дотик до ротових лопат може викликати хворобливі опіки.обумовлені дією стріляльних клітин. Близько 80 видів; мешкають переважно у тропічних, рідше у помірних морях. У Росії – 2 види: Rhizostoma pulmoзвичайний у Чорному та Азовському морях, Rhopilema asamushiзустрічається у Японському морі.

Реактивна втеча морських молюсків гребінців

Морські молюски гребінці, які зазвичай спокійно лежать на дні, при наближенні до них їх головного ворога – чудово повільної, але надзвичайно підступної хижачки – морської зірки- різко стискають стулки своєї раковини, з силою виштовхуючи з неї воду. Використовуючи таким чином, принцип реактивного руху, вони спливають і, продовжуючи відкривати та захлопувати раковину, можуть відпливати на значну відстань. Якщо ж гребінець з якоїсь причини не встигає врятуватися своїм реактивною втечею, Морська зірка охоплює його своїми руками, розкриває раковину і поїдає.


Морський гребінець(Pecten), рід морських безхребетних тварин класу двостулкових молюсків (Bivalvia). Раковина гребінця округла із прямим замковим краєм. Поверхня її покрита радіальними ребрами, що розходяться від вершини. Стулки раковини стуляються одним сильним м'язом. У Чорному морі живуть Pecten maximus, Flexopecten glaber; в Японському та Охотському морях – Mizuhopecten yessoensis ( до 17 сму діаметрі).

Реактивний насос личинки бабки-коромисла

Характер у личинки бабки-коромисла, або ешни(Aeshna sp.) не менш хижий, ніж у її крилатих родичів. Два, а іноді й чотири роки живе вона в підводному царстві, повзає кам'янистим днем, вистежуючи дрібних водних жителів, із задоволенням включаючи до свого раціону досить-таки великокаліберних пуголовків і мальків. У хвилини небезпеки личинка бабки-коромисла зривається з місця і ривками пливе вперед, рухома чудовою роботою реактивного насоса. Набираючи воду в задню кишку, а потім різко викидаючи її, личинка стрибає вперед, підганяється силою віддачі. Використовуючи таким чином, принцип реактивного руху, личинка бабки-коромисла впевненими поштовхами-ривками ховається від загрози, що її переслідує.

Реактивні імпульси нервової "автостради" кальмарів

У всіх, наведених вище випадках (принципах реактивного руху медуз, гребінців, личинок бабки-коромисла), поштовхи та ривки відокремлені один від одного значними проміжками часу, отже, велика швидкість руху не досягається. Щоб збільшилася швидкість руху, інакше кажучи, число реактивних імпульсів за одиницю часу, необхідна підвищена провідність нервів, які збуджують скорочення м'язів, обслуговуючих живий реактивний двигун. Така провідність можлива при великому діаметрі нерва.

Відомо що у кальмарів найбільші у тваринному світі нервові волокна. У середньому вони досягають у діаметрі 1 мм – у 50 разів більше, ніж у більшості ссавців – і проводять збудження вони зі швидкістю 25 м/с. А у триметрового кальмара дозидікуса(Він мешкає біля берегів Чилі) товщина нервів фантастично велика - 18 мм. Нерви товсті, як мотузки! Сигнали мозку – збудники скорочень – мчать нервовою «автострадою» кальмара зі швидкістю легкового автомобіля – 90 км/год.

Завдяки кальмарам дослідження життєдіяльності нервів ще на початку 20 століття стрімко просунулися вперед. «І хто знає, - пише британський натураліст Френк Лейн, - можливо, є зараз люди, зобов'язані кальмару тим, що їхня нервова система перебуває в нормальному стані…»

Швидкість і маневреність кальмара пояснюється також прекрасними гідродинамічні формитіла тварини, за що кальмара і прозвали «живою торпедою».

Кальмари(Teuthoidea), підряд головоногих молюсків загону десятиногих. Розміром зазвичай 0,25-0,5 м, але деякі види є найбільшими безхребетними тваринами(кальмари роду Architeuthis досягають 18 м, включаючи довжину щупалець).
Тіло у кальмарів подовжене, загострене ззаду, торпедоподібне, що визначає велику швидкість руху як у воді ( до 70 км/год), так і в повітрі (кальмари можуть вискакувати з води на висоту до 7 м).

Реактивний двигун кальмара

Реактивний рух, що використовується нині в торпедах, літаках, ракетах і космічних снарядах, властиво також головоногим молюскам – восьминогам, каракатиці, кальмарам. Найбільший інтерес для техніків та біофізиків становить реактивний двигун кальмарів. Зверніть увагу, як просто, з якою мінімальною витратою матеріалу вирішила природа це складне і досі неперевершене завдання;


По суті, кальмар має в своєму розпорядженні два принципово різні двигуни ( Рис. 1а). При повільному переміщенні він користується великим ромбовидним плавцем, що періодично згинається у вигляді хвилі, що біжить, уздовж корпусу тіла. Для швидкого кидка кальмар використовує реактивний двигун. Основою цього двигуна є мантія м'язова тканина. Вона оточує тіло молюска з усіх боків, становлячи майже половину об'єму його тіла, і утворює своєрідний резервуар. мантійну порожнину – «камеру згоряння» живої ракети, в яку періодично засмоктується вода. У мантійній порожнині знаходяться зябра та внутрішні органи кальмару ( Рис. 1б).

При реактивному способі плаваннятварина виробляє засмоктування води через широко відкриту щілину мантійну всередину мантійної порожнини з прикордонного шару. Мантійна щілина щільно "застібається" на спеціальні "запонки-кнопки" після того, як "камера згоряння" живого двигуна наповниться забортною водою. Розташована мантійна щілина поблизу середини тіла кальмара, де має найбільшу товщину. Сила, що викликає рух тварини, створюється рахунок викидання струменя води через вузьку воронку, що розташована на черевної поверхні кальмара. Ця лійка, або сифон, – "сопло" живого реактивного двигуна.

«Сопло» двигуна має спеціальний клапанта м'язи можуть його повертати. Змінюючи кут установки воронки-сопла ( Рис. 1в), кальмар пливе однаково добре, як вперед, так і назад (якщо він пливе назад, - вирва витягується вздовж тіла, а клапан притиснутий до її стінки і не заважає водяному струменю, що витікає з мантійної порожнини; коли кальмару потрібно рухатися вперед, вільний кінець воронки дещо подовжується і згинається у вертикальній площині, її вихідний отвір згортається і клапан приймає вигнуте положення). Реактивні поштовхи та всмоктування води в мантійну порожнину з невловимою швидкістю йдуть одне за одним, і кальмар ракетою проноситься у синяві океану.

Кальмар та його реактивний двигун – малюнок 1


1а) кальмар – жива торпеда; 1б) реактивний двигун кальмара; 1в) положення сопла та його клапана під час руху кальмара назад і вперед.

На забір води та її виштовхування тварина витрачає частки секунди. Засмоктуючи воду в мантійну порожнину в кормовій частині тіла в періоди уповільнених рухів за інерцією, кальмар тим самим здійснює відсмоктування прикордонного шару, запобігаючи таким чином зриву потоку при нестаціонарному режимі обтікання. Збільшуючи порції води, що викидається, і частіша скорочення мантії, кальмар легко збільшує швидкість руху.

Реактивний двигун кальмара дуже економічнийзавдяки чому він може досягати швидкості 70 км/год; деякі дослідники вважають, що навіть 150 км/год!

Інженери вже створили двигун, подібний до реактивного двигуна кальмара: це водометщо діє за допомогою звичайного бензинового або дизельного двигуна. Чому ж реактивний двигун кальмараяк і раніше привертає увагу інженерів та є об'єктом ретельних досліджень біофізиків? Для роботи під водою зручно мати пристрій без доступу атмосферного повітря. Творчі пошуки інженерів спрямовані створення конструкції гідрореактивного двигуна, подібного повітряно-реактивному

За матеріалами чудових книг:
«Біофізика під час уроків фізики»Цецилії Бунімівни Кац,
і «Примати моря»Ігоря Івановича Якимушкина


Кондаков Микола Миколайович (1908–1999) – радянський біолог, художник-анімаліст, кандидат біологічних наук. Основним внеском у біологічну науку стали виконані ним малюнки різних представників фауни. Ці ілюстрації увійшли до багатьох видань, таких як Велика Радянська Енциклопедія, Червона книга СРСР, в атласи тварин та у навчальні посібники.

Якимушкин Ігор Іванович (01.05.1929–01.01.1993) – радянський біолог, письменник – популяризатор біологіїавтор науково-популярних книг про життя тварин. Лауреат премії Всесоюзного товариства "Знання". Член Спілки письменників СРСР. Найбільш відомою публікацією Ігоря Акімушкіна є шеститомна книга "Світ тварин".

Матеріали цієї статті корисно буде застосувати не лише на уроках фізикиі біології, а й у позакласній роботі.
Біофізичний матеріалє надзвичайно благодатним для мобілізації уваги учнів, перетворення абстрактних формулювань на щось конкретне і близьке, що зачіпає як інтелектуальну, а й емоційну сферу.

Література:
§ Кац Ц.Б. Біофізика під час уроків фізики

§ § Якимушкин І.І. Примати моря
Москва: видавництво «Думка», 1974
§ Тарасов Л.В. Фізика у природі
Москва: видавництво «Освіта», 1988

Реактивний рух у природі та техніці

РЕФЕРАТ З ФІЗИКИ

Реактивний рух- рух, що виникає при відділенні від тіла з деякою швидкістю будь-якої його частини.

Реактивна сила виникає без будь-якої взаємодії із зовнішніми тілами.

Застосування реактивного руху на природі

Багато хто з нас у своєму житті зустрічався під час купання в морі з медузами. Принаймні у Чорному морі їх цілком вистачає. Але мало хто думав, що й медузи для пересування користуються реактивним рухом. Крім того, саме так пересуваються і личинки бабок, і деякі види морського планктону. І найчастіше ККД морських безхребетних тварин при використанні реактивного руху набагато вище, ніж у техновинаходів.

Реактивний рух використовується багатьма молюсками – восьминогами, кальмарами, каракатицями. Наприклад, морський молюск-гребінець рухається вперед за рахунок реактивної сили струменя води, викинутої з раковини при різкому стисканні її стулок.

Восьминіг

Каракатиця

Каракатиця, як і більшість головоногих молюсків, рухається у воді в такий спосіб. Вона забирає воду в зяброву порожнину через бічну щілину і особливу вирву попереду тіла, а потім енергійно викидає струмінь води через вирву. Каракатиця направляє трубку вирви в бік або назад і стрімко видавлюючи з неї воду, може рухатися в різні боки.

Сальпа - морська тварина з прозорим тілом, під час руху приймає воду через передній отвір, причому вода потрапляє в широку порожнину, всередині якої по діагоналі натягнуті зябра. Як тільки тварина зробить великий ковток води, отвір закривається. Тоді поздовжні та поперечні м'язи сальпи скорочуються, все тіло стискається, і вода через задній отвір виштовхується назовні. Реакція струменя, що витікає, штовхає сальпу вперед.

Найбільший інтерес має реактивний двигун кальмара. Кальмар є найбільшим безхребетним мешканцем океанських глибин. Кальмари досягли найвищої досконалості у реактивній навігації. Вони навіть тіло своїми зовнішніми формами копіює ракету (чи краще сказати – ракета копіює кальмара, оскільки йому належить у цій справі безперечний пріоритет). При повільному переміщенні кальмар користується великим ромбоподібним плавцем, який періодично згинається. Для швидкого кидка він використовує реактивний двигун. М'язова тканина – мантія оточує тіло молюска з усіх боків, об'єм її порожнини становить майже половину об'єму тіла кальмару. Тварина засмоктує воду всередину мантійної порожнини, а потім різко викидає струмінь води через вузьке сопло і з швидкістю рухається поштовхами назад. При цьому всі десять щупалець кальмара збираються у вузол над головою, і він набуває обтічної форми. Сопло забезпечене спеціальним клапаном, і м'язи можуть його повертати, змінюючи напрямок руху. Двигун кальмара дуже економічний, він здатний розвивати швидкість до 60 – 70 км/год. (Деякі дослідники вважають, що навіть до 150 км/год!) Недарма кальмара називають "живою торпедою". Вигинаючи складені пучком щупальця вправо, вліво, вгору чи вниз, кальмар повертає у той чи інший бік. Оскільки таке кермо в порівнянні з самою твариною має дуже великі розміри, то достатньо його незначного руху, щоб кальмар, навіть на повному ходу, легко міг ухилитися від зіткнення з перешкодою. Різкий поворот керма – і плавець мчить вже у зворотний бік. Ось зігнув він кінець вирви назад і ковзає тепер головою вперед. Вигнув її праворуч - і реактивний поштовх відкинув його вліво. Але коли треба плисти швидко, лійка завжди стирчить прямо між щупальцями, і кальмар мчить хвостом уперед, як біг би рак – скорохід, наділений жвавістю скакуна.

Якщо поспішати не потрібно, кальмари і каракатиці плавають, ундулюючи плавцями, - мініатюрні хвилі пробігають по них спереду назад, і тварина граційно ковзає, зрідка підштовхуючи себе також і струменем води, викинутої з-під мантії. Тоді добре помітні окремі поштовхи, які отримує молюсок у момент виверження водяних струменів. Деякі головоногі можуть розвивати швидкість до п'ятдесяти п'яти кілометрів на годину. Прямих вимірів, здається, ніхто не робив, але про це можна судити за швидкістю і дальністю польоту кальмарів, що літають. І такі, виявляється, є таланти у рідні у спрутів! Найкращий пілот серед молюсків – кальмар стенотевтіс. Англійські моряки називають його – флайінг-сквід («літаючий кальмар»). Це невелика тварина розміром із оселедець. Він переслідує риб з такою стрімкістю, що нерідко вискакує з води, стрілою пролітаючи над її поверхнею. До цього прийому він вдається і рятуючи своє життя від хижаків – тунців та макрелів. Розвинувши у воді максимальну реактивну тягу, кальмар-пілот стартує у повітря та пролітає над хвилями понад п'ятдесят метрів. Апогей польоту живої ракети лежить так високо над водою, що кальмари, що літають, нерідко потрапляють на палуби океанських суден. Чотири-п'ять метрів – не рекордна висота, на яку здіймаються в небо кальмари. Іноді вони злітають ще вищими.

Англійський дослідник молюсків доктор Рис описав у науковій статті кальмара (довжиною всього 16 сантиметрів), який, пролетівши повітрям неабияку відстань, впав на місток яхти, що височіло над водою майже сім метрів.

Трапляється, що на корабель блискучим каскадом обрушується безліч кальмарів, що літають. Античний письменник Требіус Нігер розповів одного разу сумну історію про корабель, який нібито навіть затонув під вагою кальмарів, що літали, що впали на його палубу. Кальмари можуть злітати без розгону.

Восьминоги теж вміють літати. Французький натураліст Жан Верані бачив, як звичайний восьминіг розігнався в акваріумі і раптом задом наперед несподівано вискочив із води. Описавши в повітрі дугу завдовжки метрів за п'ять, він плюхнувся назад в акваріум. Набираючи швидкість для стрибка, восьминіг рухався не лише за рахунок реактивної тяги, а й гріб щупальцями.
Мішковаті восьминоги плавають, звичайно, гірше за кальмари, але в критичні хвилини і вони можуть показати рекордний для кращих спринтерів клас. Співробітники Каліфорнійського акваріума намагалися сфотографувати восьминога, який атакує краба. Спрут кидався на видобуток з такою швидкістю, що на плівці, навіть при зйомці на найбільших швидкостях, завжди виявлялися мастила. Значить, кидок тривав соті частки секунди! Зазвичай восьминоги плавають порівняно повільно. Джозеф Сайнл, який вивчав міграції спрутів, підрахував: восьминіг розміром півметра пливе морем із середньою швидкістю близько п'ятнадцяти кілометрів на годину. Кожен струмінь води, викинутий з лійки, штовхає його вперед (вірніше, назад, бо восьминіг пливе задом наперед) на два – два з половиною метри.

Реактивний рух можна зустріти у світі рослин. Наприклад, дозрілі плоди "шаленого огірка" при найлегшому дотику відскакують від плодоніжки, а з отвору, що утворився, з силою викидається клейка рідина з насінням. Сам огірок при цьому відлітає у протилежному напрямку до 12 м-коду.

Знаючи закон збереження імпульсу, можна змінювати власну швидкість переміщення у відкритому просторі. Якщо ви знаходитесь в човні і у вас є кілька важких каменів, то кидаючи каміння у певний бік ви рухатиметеся в протилежному напрямку. Те саме буде і в космічному просторі, але там для цього використовують реактивні двигуни.

Кожен знає, що постріл із рушниці супроводжується віддачею. Якби вага кулі дорівнювала б вазі рушниці, вони б розлетілися з однаковою швидкістю. Віддача відбувається тому, що маса газів, що відкидається, створює реактивну силу, завдяки якій може бути забезпечено рух як у повітрі, так і в безповітряному просторі. І чим більша маса і швидкість газів, що витікають, тим більшу силу віддачі відчуває наше плече, чим сильніша реакція рушниці, тим більша реактивна сила.

Застосування реактивного руху на техніці

Протягом багатьох століть людство мріяло про космічні польоти. Письменники-фантасти пропонували різні засоби для досягнення цієї мети. У XVII столітті з'явилася розповідь французького письменника Сірано де Бержерака про політ на Місяць. Герой цієї розповіді дістався Місяця в залізному візку, над яким він увесь час підкидав сильний магніт. Притягаючись до нього, віз підвищувався вище Землею, поки не досяг Місяця. А барон Мюнхгаузен розповідав, що забрався на Місяць стеблом боба.

Наприкінці першого тисячоліття нашої ери в Китаї винайшли реактивний рух, який наводив на дію ракети - бамбукові трубки, начинені порохом, вони також використовувалися як забава. Один із перших проектів автомобілів був також із реактивним двигуном і належав цей проект Ньютону

Автором першого світі проекту реактивного літального апарату, призначеного для польоту людини, був російський революціонер – народовець Н.І. Кібальчич. Його стратили 3 квітня 1881 р. за участь у замаху на імператора Олександра ІІ. Свій проект він розробив у в'язниці після смертного вироку. Кібальчич писав: “Я перебуваючи в ув'язненні, за кілька днів до своєї смерті я пишу цей проект. Я вірю в здійсненність моєї ідеї, і ця віра підтримує мене у моєму жахливому становищі…Я спокійно зустріну смерть, знаючи, що моя ідея не загине разом зі мною”.

Ідея використання ракет для космічних польотів була запропонована ще на початку нашого століття російським вченим Костянтином Едуардовичем Ціолковським. У 1903 року з'явилася друком стаття викладача калузької гімназії К.Э. Ціолковського "Дослідження світових просторів реактивними приладами". У цій роботі було найважливіше для космонавтики математичне рівняння, тепер відоме як “формула Ціолковського”, яке описувало рух тіла змінної маси. Надалі він розробив схему ракетного двигуна на рідкому паливі, запропонував багатоступінчасту конструкцію ракети, висловив ідею можливості створення цілих космічних міст на навколоземної орбіті. Він показав, що єдиний апарат, здатний подолати тяжкість - це ракета, тобто. апарат з реактивним двигуном, що використовує пальне та окислювач, що знаходяться на самому апараті.

Реактивний двигун– це двигун, що перетворює хімічну енергію палива на кінетичну енергію газового струменя, при цьому двигун набуває швидкості у зворотному напрямку.

Ідея К.Е.Ціолковського була здійснена радянськими вченими під керівництвом академіка Сергія Павловича Корольова. Перший в історії штучний супутник Землі за допомогою ракети було запущено в Радянському Союзі 4 жовтня 1957 року.

Принцип реактивного руху знаходить широке практичне застосування в авіації та космонавтиці. У космічному просторі немає середовища, з яким тіло могло б взаємодіяти і тим самим змінювати напрямок і модуль своєї швидкості, тому для космічних польотів можуть бути використані лише реактивні літальні апарати, тобто ракети.

Влаштування ракети

В основі руху ракети лежить закон збереження імпульсу. Якщо в певний момент часу від ракети буде відкинуто якесь тіло, то вона набуде такого ж імпульсу, але спрямованого в протилежний бік.

У будь-якій ракеті, незалежно від її конструкції, завжди є оболонка та паливо з окислювачем. Оболонка ракети включає корисний вантаж (в даному випадку це космічний корабель), приладовий відсік і двигун (камера згоряння, насоси тощо).

Основну масу ракети становить паливо з окислювачем (окислювач необхідний підтримки горіння палива, оскільки у космосі немає кисню).

Паливо та окислювач за допомогою насосів подаються до камери згоряння. Паливо, згоряючи, перетворюється на газ високої температури та високого тиску. Завдяки великій різниці тисків в камері згоряння та в космічному просторі, гази з камери згоряння потужним струменем спрямовуються назовні через розтруб спеціальної форми, що називається соплом. Призначення сопла полягає в тому, щоб підвищити швидкість струменя.

Перед стартом ракети її імпульс дорівнює нулю. В результаті взаємодії газу в камері згоряння та решти всіх частин ракети вириваються через сопло газ отримує деякий імпульс. Тоді ракета є замкнуту систему, і її загальний імпульс повинен і після запуску дорівнює нулю. Тому і оболонка ракети зовсім, що в ній знаходиться, отримує імпульс, що дорівнює модулю імпульсу газу, але протилежний у напрямку.

Найбільш масивну частину ракети, призначену для старту та розгону всієї ракети, називають першим ступенем. Коли перший масивний ступінь багатоступінчастої ракети вичерпає при розгоні всі запаси палива, вона відокремлюється. Подальший розгін продовжує другий, менш масивний ступінь, і до раніше досягнутого за допомогою першого ступеня швидкості вона додає ще деяку швидкість, а потім відокремлюється. Третій ступінь продовжує нарощування швидкості до необхідного значення та доставляє корисний вантаж на орбіту.

Першою людиною, яка здійснила політ у космічному просторі, був громадянин Радянського Союзу Юрій Олексійович Гагарін. 12 квітня 1961 р. Він облетів земну кулю на кораблі-супутнику «Схід»

Радянські ракети першими досягли Місяця, облетіли Місяць і сфотографували його невидиму із Землі бік, першими досягли планету Венера і доставили її поверхню наукові прилади. У 1986 р. два радянські космічні кораблі «Вега-1» і «Вега-2» з близької відстані досліджували комету Галлея, що наближається до Сонця раз на 76 років.

Системи. Технікафізичних вправ. Цільовий результат рухузалежить не... Оздоровчі сили природиОздоровчі сили природимають суттєвий вплив... поєднанням сил інерційних, реактивнихі концентрованих м'язових скорочень.