Біографії Характеристики Аналіз

Розв'язання тригонометричних рівнянь із градусами. Тригонометричні рівняння

Найпростіші тригонометричні рівняння вирішуються, як правило, за формулами. Нагадаю, що найпростішими називаються такі тригонометричні рівняння:

sinx = а

cosx = а

tgx = а

ctgx = а

х - кут, який потрібно знайти,
а – будь-яке число.

А ось і формули, за допомогою яких можна одразу записати рішення цих найпростіших рівнянь.

Для синусу:


Для косинуса:

х = ± arccos a + 2π n, n ∈ Z


Для тангенсу:

х = arctg a + π n, n ∈ Z


Для котангенсу:

х = arcctg a + π n, n ∈ Z

Власне, це і є теоретична частина розв'язання найпростіших тригонометричних рівнянь. До того ж, вся!) Зовсім нічого. Проте, кількість помилок на цю тему просто зашкалює. Особливо при незначному відхиленні прикладу від шаблону. Чому?

Та тому, що маса народу записує ці літери, не розуміючи їхнього сенсу зовсім!З побоюванням записує, як би чого не вийшло... З цим треба розібратися. Тригонометрія для людей, або люди для тригонометрії, зрештою!?)

Розберемося?

Один кут у нас буде рівний arccos a, другий: -arccos a.

І так виходитиме завжди.За будь-якого а.

Якщо не вірите, наведіть курсор мишки на картинку, або торкніться малюнку на планшеті. Я змінив число а на якесь негативне. Все одно, один кут у нас вийшов arccos a, другий: -arccos a.

Отже, відповідь можна завжди записати у вигляді двох серій коріння:

х 1 = arccos a + 2π n, n ∈ Z

х 2 = - arccos a + 2π n, n ∈ Z

Об'єднуємо ці дві серії в одну:

х = ± arccos а + 2π n, n ∈ Z

І всі справи. Отримали загальну формулу для вирішення найпростішого тригонометричного рівняння з косинусом.

Якщо ви розумієте, що це не якась наднаукова мудрість, а просто скорочений запис двох серій відповідей,вам і завдання "С" будуть по плечу. З нерівностями, з відбором коренів із заданого інтервалу... Там відповідь із плюсом/мінусом не котить. А якщо поставитися до відповіді ділово, та розбити його на дві окремі відповіді, все і вирішується.) Власне, для цього й розуміємося. Що, як і звідки.

У найпростішому тригонометричному рівнянні

sinx = а

теж виходить дві серії коренів. Завжди. І ці дві серії також можна записати одним рядком. Тільки цей рядок хитрішим буде:

х = (-1) n arcsin a + π n, n ∈ Z

Але суть залишається незмінною. Математики просто сконструювали формулу, щоб замість двох записів серій коріння зробити одну. І все!

Перевіримо математиків? А то мало...)

У попередньому уроці докладно розібрано рішення (без будь-яких формул) тригонометричного рівняння із синусом:

У відповіді вийшло дві серії коренів:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Якщо ми вирішуватимемо це ж рівняння за формулою, отримаємо відповідь:

х = (-1) n arcsin 0,5 + π n, n ∈ Z

Взагалі, це недороблена відповідь.) Учень повинен знати, що arcsin 0,5 = π /6.Повноцінна відповідь буде:

х = (-1) n π /6+ π n, n ∈ Z

Тут виникає цікаве питання. Відповідь через х 1; х 2 (це правильна відповідь!) і через самотню х (і це правильна відповідь!) - одне й те саме, чи ні? Зараз дізнаємось.)

Підставляємо у відповідь з х 1 значення n =0; 1; 2; і т.д., вважаємо, отримуємо серію коренів:

х 1 = π/6; 13π/6; 25π/6 і так далі.

При такій же підстановці у відповідь х 2 , отримуємо:

х 2 = 5?/6; 17π/6; 29π/6 і так далі.

А тепер підставляємо значення n (0; 1; 2; 3; 4...) у загальну формулу для самотнього х . Тобто зводимо мінус один у нульовий ступінь, потім у першу, другу, і т.д. Ну і, зрозуміло, у другий доданок підставляємо 0; 1; 2 3; 4 і т.д. І рахуємо. Отримуємо серію:

х = π/6; 5π/6; 13π/6; 17π/6; 25π/6 і так далі.

Ось все і видно.) Загальна формула видає нам такі самі результати,що й дві відповіді окремо. Тільки все одразу, по порядку. Не обдурили математики.)

Формули для вирішення тригонометричних рівнянь із тангенсом та котангенсом теж можна перевірити. Але не будемо.) Вони й так простенькі.

Я розписав всю цю підстановку та перевірку спеціально. Тут важливо зрозуміти одну просту річ: формули для розв'язання елементарних тригонометричних рівнянь є, лише короткий запис відповідей.Для цієї стислості довелося вставити плюс/мінус у рішення для косинуса та (-1) n у рішення для синуса.

Ці вставки ніяк не заважають завданням, де потрібно просто записати відповідь елементарного рівняння. Але якщо треба вирішувати нерівність, чи далі треба щось робити з відповіддю: відбирати коріння на інтервалі, перевіряти на ОДЗ тощо, ці вставочки можуть запросто вибити людину з колії.

І що робити? Так або розписати відповідь через дві серії, або вирішувати рівняння/нерівність по тригонометричному колу. Тоді зникають ці вставочки і життя стає легшим.

Можна підбити підсумки.

Для вирішення найпростіших тригонометричних рівнянь є готові формули відповідей. Чотири штуки. Вони хороші для миттєвого запису рішення рівняння. Наприклад, треба розв'язати рівняння:


sinx = 0,3

Легко: х = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Без проблем: х = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Просто: х = arctg 1,2 + π n, n ∈ Z


ctgx = 3,7

Однією лівою: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Якщо ви, блищачи знаннями, миттєво пишете відповідь:

х= ± arccos 1,8 + 2π n, n ∈ Z

то блищате ви вже, це... того... з калюжі.) Правильна відповідь: рішень немає. Не розумієте чому? Прочитайте, що таке арккосинус. Крім того, якщо в правій частині вихідного рівняння стоять табличні значення синуса, косинуса, тангенсу, котангенсу, - 1; 0; √3; 1/2; √3/2 і т.п. - відповідь через арки буде недоробленою. Арки потрібно обов'язково перевести у радіани.

А якщо вам трапилася нерівність, типу

то відповідь у вигляді:

х πn, n ∈ Z

є рідкісна ахінея, так ...) Тут треба по тригонометричному колі вирішувати. Чим ми займемося у відповідній темі.

Для тих, хто героїчно дочитав до цих рядків. Я просто не можу не оцінити ваших титанічних зусиль. Вам бонус.)

Бонус:

При записі формул у тривожній бойовій обстановці, навіть загартовані навчанням ботаны часто плутаються, де πn, а де 2π n. Ось вам простий приймач. У всіхформулах варто πn. Крім єдиної формули з арккосинусом. Там стоїть 2πn. Двапіен. Ключове слово - два.У цій самій єдиній формулі стоять двазнак на початку. Плюс і мінус. І там і там - два.

Так що якщо ви написали двазнака перед арккосинусом, легше згадати, що в кінці буде двапіен. А ще навпаки. Пропустить людина знак ± , дістанеться кінця, напише правильно двапіен, та й схаменеться. Попереду двазнаку! Повернеться людина до початку, та помилку і виправить! Ось так.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Тригонометричні рівняння – тема не найпростіша. Аж надто вони різноманітні.) Наприклад, такі:

sin 2 x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

І тому подібне...

Але в цих (і всіх інших) тригонометричних монстрів є дві загальні та обов'язкові ознаки. Перший - ви не повірите - в рівняннях присутні тригонометричні функції. Другий: всі вирази з іксом знаходяться всередині цих функцій.І лише там! Якщо ікс з'явиться десь зовні,наприклад, sin2x + 3x = 3,це вже буде рівняння змішаного типу. Такі рівняння потребують індивідуального підходу. Тут ми їх не розглядатимемо.

Злі рівняння в цьому уроці ми теж вирішувати не будемо.) Тут ми розбиратимемося з найпростішими тригонометричними рівняннями.Чому? Та тому, що рішення будь-якихТригонометричних рівнянь складається з двох етапів. На першому етапі зле рівняння шляхом різних перетворень зводиться до простого. З другого краю - вирішується це найпростіше рівняння. Інакше ніяк.

Так що, якщо на другому етапі у вас проблеми – перший етап особливого сенсу не має.)

Як виглядають елементарні тригонометричні рівняння?

sinx = а

cosx = а

tgx = а

ctgx = а

Тут а позначає будь-яке число. Будь-яке.

До речі, всередині функції може бути не чистий ікс, а якийсь вираз, типу:

cos(3x+π /3) = 1/2

і тому подібне. Це ускладнює життя, але на методі розв'язання тригонометричного рівняння ніяк не позначається.

Як розв'язувати тригонометричні рівняння?

Тригонометричні рівняння можна вирішувати двома шляхами. Перший шлях: з використанням логіки та тригонометричного кола. Цей шлях ми розглянемо тут. Другий шлях – з використанням пам'яті та формул – розглянемо у наступному уроці.

Перший шлях зрозумілий, надійний, і його важко забути.) Він хороший для розв'язання і тригонометричних рівнянь, і нерівностей, і будь-яких хитрих нестандартних прикладів. Логіка сильніша за пам'ять!)

Вирішуємо рівняння за допомогою тригонометричного кола.

Включаємо елементарну логіку та вміння користуватися тригонометричним колом. Чи не вмієте!? Однак... Важко вам у тригонометрії доведеться...) Але не біда. Загляньте в уроки "Тригонометричне коло...... Що це таке?" та "Відлік кутів на тригонометричному колі". Там просто все. На відміну від підручників...)

Ах, ви в курсі!? І навіть освоїли "Практичну роботу з тригонометричним колом"!? Прийміть вітання. Ця тема буде вам близька і зрозуміла.) Що особливо тішить, тригонометричному колу байдуже, яке рівняння ви вирішуєте. Синус, косинус, тангенс, котангенс - йому все одно. Принцип рішення один.

Ось і беремо будь-яке елементарне тригонометричне рівняння. Хоча б це:

cosx = 0,5

Потрібно знайти ікс. Якщо говорити людською мовою, потрібно знайти кут (ікс), косинус якого дорівнює 0,5.

Як ми використовували коло раніше? Ми малювали на ньому ріг. У градусах чи радіанах. І відразу бачили тригонометричні функції цього кута. Зараз вчинимо навпаки. Намалюємо на колі косинус, що дорівнює 0,5 і відразу побачимо кут. Залишиться лише записати відповідь.) Так-так!

Малюємо коло і відзначаємо косинус, що дорівнює 0,5. На осі косинусів, зрозуміло. Ось так:

Тепер намалюємо кут, який дає нам косинус. Наведіть курсор мишки на малюнок (або торкніться картинки на планшеті), та побачитецей самий кут х.

Косинус якого кута дорівнює 0,5?

х = π /3

cos 60°= cos( π /3) = 0,5

Дехто скептично хмикне, так... Мовляв, чи варто було коло городити, коли і так все ясно... Можна, звичайно, хмикати...) Але річ у тому, що це помилкова відповідь. Точніше, недостатній. Знавці кола розуміють, що тут ще ціла купа кутів, які теж дають косинус, що дорівнює 0,5.

Якщо провернути рухливий бік ОА на повний обіг, точка А потрапить у вихідне становище. З тим же косинус, рівним 0,5. Тобто. кут змінитьсяна 360° або 2π радіан, а косинус – ні.Новий кут 60 ° + 360 ° = 420 ° також буде рішенням нашого рівняння, т.к.

Таких повних обертів можна накрутити безліч… І всі ці нові кути будуть рішеннями нашого тригонометричного рівняння. І їх треба якось записати у відповідь. Всі.Інакше рішення не вважається, так...)

Математика вміє це робити просто та елегантно. В одній короткій відповіді записувати нескінченна безлічрішень. Ось як це виглядає для нашого рівняння:

х = π /3 + 2π n, n ∈ Z

Розшифрую. Все-таки писати осмисленоприємніше, ніж тупо малювати якісь загадкові літери, правда?)

π /3 - це той самий кут, який ми побачилина колі та визначилиза таблицею косінусів.

- Це один повний оборот у радіанах.

n - це повних, тобто. цілихоборотів. Зрозуміло, що n може бути 0, ±1, ±2, ±3.... і так далі. Що й вказано коротким записом:

n ∈ Z

n належить ( ) безлічі цілих чисел ( Z ). До речі, замість літери n цілком можуть вживатися літери k, m, t і т.д.

Цей запис означає, що ви можете взяти будь-яке ціле n . Хоч -3, хоч 0, хоч +55. Яке бажаєте. Якщо підставіть це число в запис відповіді, отримайте конкретний кут, який обов'язково буде вирішенням нашого суворого рівняння.

Або, іншими словами, х = π /3 - це єдиний корінь із нескінченної множини. Щоб отримати все інше коріння, достатньо до π /3 додати будь-яку кількість повних оборотів ( n ) у радіанах. Тобто. 2π n радіан.

Всі? Ні. Я спеціально насолоду розтягую. Щоб запам'яталося краще.) Ми отримали лише частину відповідей до нашого рівняння. Цю першу частину рішення я запишу ось як:

х 1 = π /3 + 2π n, n ∈ Z

х 1 - не один корінь, це ціла серія коренів, записана у короткій формі.

Але є ще кути, які теж дають косинус, що дорівнює 0,5!

Повернемося до нашої картинки, за якою записували відповідь. Ось вона:

Наводимо мишку на картинку та бачимоще один кут, який також дає косинус 0,5.Як ви вважаєте, чому він дорівнює? Трикутнички однакові... Так! Він дорівнює куту х , Тільки відкладений у негативному напрямку. Це кут -х. Але ікс ми вже вирахували. π /3 або 60 °. Отже, можна сміливо записати:

х 2 = - π /3

Ну і, зрозуміло, додаємо всі кути, які виходять через повні оберти:

х 2 = - π /3 + 2π n, n ∈ Z

Ось тепер все.) По тригонометричному колі ми побачили(хто розуміє, звичайно) всікути, що дають косинус, рівний 0,5. І записали ці кути у короткій математичній формі. У відповіді вийшло дві нескінченні серії коренів:

х 1 = π /3 + 2π n, n ∈ Z

х 2 = - π /3 + 2π n, n ∈ Z

Це правильна відповідь.

Сподіваюся, загальний принцип розв'язання тригонометричних рівняньза допомогою кола зрозумілий. Зазначаємо на колі косинус (синус, тангенс, котангенс) із заданого рівняння, малюємо відповідні йому кути та записуємо відповідь.Звичайно, треба збагнути, що за кути ми побачилина колі. Іноді це не так очевидно. Ну так я й казав, що тут логіка потрібна.)

Наприклад розберемо ще одне тригонометричне рівняння:

Прошу врахувати, що число 0,5 - це не єдине можливе число в рівняннях!) Просто мені його писати зручніше, ніж коріння та дроби.

Працюємо за загальним принципом. Малюємо коло, відзначаємо (на осі синусів, звичайно!) 0,5. Малюємо відразу всі кути, що відповідають цьому синусу. Отримаємо таку картину:

Спочатку знаємося з кутом х у першій чверті. Згадуємо таблицю синусів та визначаємо величину цього кута. Справа нехитра:

х = π /6

Згадуємо про повні оберти і з чистою совістю записуємо першу серію відповідей:

х 1 = π /6 + 2π n, n ∈ Z

Половина справи зроблено. А ось тепер треба визначити другий кут...Це хитріші, ніж у косинусах, так... Але логіка нас врятує! Як визначити другий кут через х? Та легко! Трикутнички на картинці однакові, і червоний кут х дорівнює куту х . Тільки відрахований він від кута в негативному напрямку. Тому і червоний.) А нам відповіді потрібен кут, відрахований правильно, від позитивної півосі ОХ, тобто. від кута 0 градусів.

Наводимо курсор на малюнок і все бачимо. Перший кут я прибрав, щоб не ускладнював картинку. Цікавий нас кут (намальований зеленим) дорівнюватиме:

π - х

Ікс ми знаємо, це π /6 . Отже, другий кут буде:

π - π /6 = 5π /6

Знову згадуємо про добавку повних обертів та записуємо другу серію відповідей:

х 2 = 5π /6 + 2π n, n ∈ Z

От і все. Повноцінна відповідь складається з двох серій коріння:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Рівняння з тангенсом і котангенсом можна легко вирішувати за тим самим загальним принципом розв'язання тригонометричних рівнянь. Якщо, звичайно, знаєте, як намалювати тангенс та котангенс на тригонометричному колі.

У наведених вище прикладах я використовував табличне значення синуса та косинуса: 0,5. Тобто. одне з тих значень, які учень знати зобов'язаний.А тепер розширимо наші можливості на всі інші значення.Вирішувати, так вирішувати!)

Отже, нехай нам треба вирішити таке тригонометричне рівняння:

Такого значення косинуса у коротких таблицях немає. Холоднокровно ігноруємо цей страшний факт. Малюємо коло, відзначаємо на осі косінусів 2/3 і малюємо відповідні кути. Отримуємо таку картинку.

Розбираємось, для початку, з кутом у першій чверті. Знати б, чому дорівнює ікс, одразу відповідь записали б! Не знаємо... Провал!? Спокій! Математика своїх у біді не кидає! Вона на цей випадок вигадала арккосинуси. Не в курсі? Даремно. З'ясуйте, Це набагато простіше, ніж ви думаєте. За цим посиланням жодного складного заклинання щодо "зворотних тригонометричних функцій" немає... Зайве це в цій темі.

Якщо ви знаєте, досить сказати собі: "Ікс - це кут, косинус якого дорівнює 2/3". І відразу, чисто за визначенням арккосинусу, можна записати:

Згадуємо про додаткові звороти та спокійно записуємо першу серію коренів нашого тригонометричного рівняння:

х 1 = arccos 2/3 + 2π n, n ∈ Z

Фактично автоматично записується і друга серія коренів, для другого кута. Все те саме, тільки ікс (arccos 2/3) буде з мінусом:

х 2 = - arccos 2/3 + 2π n, n ∈ Z

І всі справи! Це правильна відповідь. Навіть простіше, ніж із табличними значеннями. До речі, найуважніші помітять, що ця картинка з рішенням через арккосинус нічим, по суті, не відрізняється від картинки рівняння cosx = 0,5.

Саме так! Загальний принцип на те й загальний! Я спеціально намалював дві майже однакові картинки. Коло показує нам кут х за його косинус. Табличний це косинус, чи ні – колу невідомо. Що це за кут, π /3, або арккосинус який - це вже вирішувати.

З синусом та сама пісня. Наприклад:

Знову малюємо коло, відзначаємо синус, що дорівнює 1/3, малюємо кути. Виходить така картина:

І знову картинка майже та сама, що й для рівняння sinx = 0,5.Знову починаємо з кута у першій чверті. Чому дорівнює ікс, якщо його синус дорівнює 1/3? Не питання!

Ось і готова перша пачка коренів:

х 1 = arcsin 1/3 + 2π n, n ∈ Z

Розбираємось з другим кутом. У прикладі з табличним значенням 0,5 він дорівнював:

π - х

Так і тут він буде такий самий! Тільки ікс інший, arcsin 1/3. Ну і що!? Можна сміливо записувати другу пачку коренів:

х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

Це абсолютно правильна відповідь. Хоча й не дуже звично. Зате зрозуміло, сподіваюся.)

Ось так вирішуються тригонометричні рівняння за допомогою кола. Цей шлях наочний і зрозумілий. Саме він рятує у тригонометричних рівняннях з відбором коренів на заданому інтервалі, у тригонометричних нерівностях – ті взагалі вирішуються практично завжди по колу. Коротше, в будь-яких завданнях, які трохи складніші за стандартні.

Чи застосуємо знання на практиці?)

Розв'язати тригонометричні рівняння:

Спочатку простіше, прямо з цього уроку.

Тепер складніше.

Підказка: тут доведеться поміркувати над колом. Особисто.)

А тепер зовні прості... Їх ще окремими випадками називають.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Підказка: тут треба збагнути по колу, де дві серії відповідей, а де одна... І як замість двох серій відповідей записати одну. Та так, щоб жоден корінь із нескінченної кількості не загубився!)

Ну і зовсім прості):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Підказка: тут треба знати, що таке арксінус, арккосинус? Що таке Арктангенс, Арккотангенс? Найпростіші визначення. Зате згадувати жодних табличних значень не треба!)

Відповіді, зрозуміло, безладно):

х 1= arcsin0,3 + 2π n, n ∈ Z
х 2= π - arcsin0,3 + 2

Чи не все виходить? Буває. Прочитайте урок ще раз. Тільки вдумливо(є таке застаріле слово...) І за посиланнями походьте. Основні посилання - про світ. Без нього в тригонометрії – як дорогу переходити із зав'язаними очима. Іноді виходить.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Найпростішими тригонометричними рівняннями називають рівняння

Cos(x)=a, sin(x)=a, tg(x)=a, ctg(x)=a

Рівняння cos(x) = a

Пояснення та обґрунтування

  1. Коріння рівняння cosx = а. При | a | > 1 рівняння немає коріння, оскільки | cosx |< 1 для любого x (прямая y = а при а >1 або при а< -1 не пересекает график функцииy = cosx).

Нехай | а |< 1. Тогда прямая у = а пересекает график функции

у = cos x. На проміжку функція y = cos x зменшується від 1 до -1. Але спадна функція приймає кожне своє значення тільки в одній точці її області визначення, тому рівняння cos x = а має на цьому проміжку тільки один корінь, який за визначенням арккосинусу дорівнює: x 1 = arccos а (і для цього кореня cos x = а).

Косинус - парна функція, тому на проміжку [-п; 0] рівняння cos x = а також має лише один корінь - число, протилежне x 1, тобто

x 2 = -arccos а.

Таким чином, на проміжку [-п; п] (довжиною 2п) рівняння cos x = а при | а |< 1 имеет только корни x = ±arccos а.

Функція y = cos x періодична з періодом 2п, тому решта всіх корінь відрізняється від знайдених на 2пп (n € Z). Отримуємо наступну формулу коренів рівняння cos x = а при

x = ± arccos а + 2пп, n £ Z.

  1. Часткові випадки розв'язання рівняння cosx = а.

Корисно пам'ятати спеціальні записи коренів рівняння cos x = а при

а = 0, а = -1, а = 1, які можна легко отримати, використовуючи як орієнтир одиничне коло.

Оскільки косинус дорівнює абсцисі відповідної точки одиничного кола, отримуємо, що cos x = 0 тоді і тільки тоді, коли відповідною точкою одиничного кола є точка A або точка B.

Аналогічно cos x = 1 тоді і тільки тоді, коли відповідною точкою одиничного кола є точка C, отже,

x = 2πп, k € Z.

Також cos х = -1 тоді і лише тоді, коли відповідною точкою одиничного кола є точка D, таким чином, х = п + 2пn,

Рівняння sin(x) = a

Пояснення та обґрунтування

  1. Коріння рівняння sinx = а. При | а | > 1 рівняння немає коріння, оскільки | sinx |< 1 для любого x (прямая y = а на рисунке при а >1 або при а< -1 не пересекает график функции y = sinx).

Співвідношення між основними тригонометричними функціями – синусом, косінусом, тангенсом та котангенсом – задаються тригонометричними формулами. Оскільки зв'язків між тригонометричними функціями досить багато, цим пояснюється і розмаїття тригонометричних формул. Одні формули пов'язують тригонометричні функції однакового кута, інші функції кратного кута, треті дозволяють знизити ступінь, четверті виразити всі функції через тангенс половинного кута, і т.д.

У цій статті ми по порядку перерахуємо всі основні тригонометричні формули, яких достатньо для вирішення більшості задач тригонометрії. Для зручності запам'ятовування та використання групуватимемо їх за призначенням і заноситимемо в таблиці.

Навігація на сторінці.

Основні тригонометричні тотожності

Основні тригонометричні тотожностізадають зв'язок між синусом, косинусом, тангенсом та котангенсом одного кута. Вони випливають із визначення синуса, косинуса, тангенсу та котангенсу, а також поняття одиничного кола. Вони дозволяють виразити одну тригонометричну функцію через будь-яку іншу.

Детальний опис цих формул тригонометрії, їх висновок та приклади застосування дивіться у статті .

Формули наведення




Формули наведеннявипливають із властивостей синуса, косинуса, тангенсу і котангенсу, тобто, вони відображають властивість періодичності тригонометричних функцій, властивість симетричності, а також властивість зсуву на даний кут. Ці тригонометричні формули дозволяють від роботи з довільними кутами переходити до роботи з кутами в межах від нуля до 90 градусів.

Обгрунтування цих формул, мнемонічне правило їх запам'ятовування і приклади їх застосування можна вивчити у статті .

Формули додавання

Тригонометричні формули складанняпоказують, як тригонометричні функції суми чи різниці двох кутів виражаються через тригонометричні функції цих кутів. Ці формули є базою для виведення наступних нижче тригонометричних формул.

Формули подвійного, потрійного тощо. кута



Формули подвійного, потрійного тощо. кута (їх ще називають формулами кратного кута) показують, як тригонометричні функції подвійних, потрійних і т.д. кутів () виражаються через тригонометричні функції одинарного кута. Їх висновок виходить з формулах складання.

Більш детальна інформація зібрана у статті формули подвійного, потрійного тощо. кута.

Формули половинного кута

Формули половинного кутапоказують, як тригонометричні функції половинного кута виражаються через косинус цілого кута. Ці тригонометричні формули випливають із формул подвійного кута.

Їх висновок та приклади застосування можна переглянути у статті.

Формули зниження ступеня


Тригонометричні формули зниження ступеняпокликані сприяти переходу від натуральних ступенів тригонометричних функцій до синусів і косинусів у першому ступені, але кратних кутів. Іншими словами, вони дозволяють знижувати ступеня тригонометричних функцій до першої.

Формули суми та різниці тригонометричних функцій


Основне призначення формул суми та різниці тригонометричних функційполягає у переході до твору функцій, що дуже корисно при спрощенні тригонометричних виразів. Зазначені формули також широко використовуються при вирішенні тригонометричних рівнянь, оскільки дозволяють розкладати на множники суму та різницю синусів і косінусів.

Формули твору синусів, косінусів та синуса на косинус


Перехід від твору тригонометричних функцій до суми чи різниці здійснюється за допомогою формул твору синусів, косінусів та синусу на косинус.

Універсальна тригонометрична підстановка

Огляд основних формул тригонометрії завершуємо формулами, що виражають тригонометричні функції через тангенс половинного кута. Така заміна отримала назву універсальної тригонометричної підстановки. Її зручність у тому, що це тригонометричні функції виражаються через тангенс половинного кута раціонально без коренів.

Список літератури.

  • Алгебра:Навч. для 9 кл. середовищ. шк./Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова; За ред. С. А. Теляковського.- М.: Просвітництво, 1990.- 272 с.: Іл.- ISBN 5-09-002727-7
  • Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  • Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  • Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників до технікумів): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.

Copyright by cleverstudents

Всі права захищені.
Охороняється законом про авторське право. Жодну частину сайту, включаючи внутрішні матеріали та зовнішнє оформлення, не можна відтворювати у будь-якій формі або використовувати без попереднього письмового дозволу правовласника.

Ви можете замовити докладне вирішення вашої задачі!

Рівність, що містить невідому під знаком тригонометричної функції (`sin x, cos x, tg x` або `ctg x`), називається тригонометричним рівнянням, саме їх формули ми й розглянемо далі.

Найпростішими називаються рівняння `sin x=a, cos x=a, tg x=a, ctg x=a`, де `x` - кут, який потрібно знайти, `a` - будь-яке число. Запишемо для кожного з них формули коріння.

1. Рівняння `sin x=a`.

При `|a|>1` немає рішень.

При `|a| \leq 1` має нескінченну кількість рішень.

Формула коренів: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Рівняння `cos x=a`

При `|a|>1` — як і у випадку із синусом, рішень серед дійсних чисел не має.

При `|a| \leq 1` має безліч рішень.

Формула коренів: x = p arccos a + 2 pi n, n in Z

Приватні випадки для синуса та косинуса у графіках.

3. Рівняння `tg x=a`

Має безліч рішень при будь-яких значеннях `a`.

Формула коренів: `x=arctg a + \pi n, n \in Z`

4. Рівняння `ctg x=a`

Також має безліч рішень при будь-яких значеннях `a`.

Формула коренів: `x=arcctg a + \pi n, n \in Z`

Формули коренів тригонометричних рівнянь у таблиці

Для синусу:
Для косинуса:
Для тангенсу та котангенсу:
Формули розв'язання рівнянь, що містять зворотні тригонометричні функції:

Методи розв'язання тригонометричних рівнянь

Розв'язання будь-якого тригонометричного рівняння складається з двох етапів:

  • за допомогою перетворити його до найпростішого;
  • вирішити отримане найпростіше рівняння, використовуючи вище написані формули коренів та таблиці.

Розглянемо на прикладах основні способи розв'язання.

Алгебраїчний метод.

У цьому вся методі робиться заміна змінної та її підстановка на рівність.

приклад. Розв'язати рівняння: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+frac \pi 6)-3cos(x+frac \pi 6)+1=0`,

робимо заміну: `cos(x+\frac \pi 6)=y`, тоді `2y^2-3y+1=0`,

знаходимо коріння: `y_1=1, y_2=1/2`, звідки випливають два випадки:

1. ` cos (x + frac \ pi 6) = 1 `, ` x + \ frac \ pi 6 = 2 \ pi n `, ` x_1 = - \ frac \ pi 6 +2 \ pi n `.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Відповідь: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-frac \pi 6+2\pi n`.

Розкладання на множники.

приклад. Розв'язати рівняння: `sin x+cos x=1`.

Рішення. Перенесемо вліво всі члени рівності: `sin x+cos x-1=0`. Використовуючи , перетворимо та розкладемо на множники ліву частину:

`sin x - 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. ` sin x/2 = 0 `, ` x/2 = \ pi n `, ` x_1 = 2 \ pi n `.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=pi/2+ 2pi n`.

Відповідь: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведення до однорідного рівняння

Спочатку потрібно це тригонометричне рівняння привести до одного з двох видів:

`a sin x+b cos x=0` (однорідне рівняння першого ступеня) або `a sin^2 x + b sin x cos x +c cos^2 x=0` (однорідне рівняння другого ступеня).

Потім розділити обидві частини на `cos x \ ne 0` - для першого випадку, і на ` cos ^ 2 x \ ne 0` - для другого. Отримаємо рівняння щодо `tg x`: `a tg x+b=0` та `a tg^2 x + b tg x +c =0`, які потрібно вирішити відомими способами.

приклад. Розв'язати рівняння: `2 sin ^ 2 x + sin x cos x - cos ^ 2 x = 1 `.

Рішення. Запишемо праву частину, як `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x - cos^2 x=`` sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x - cos^2 x - `` sin^2 x - cos^2 x=0`

` sin ^ 2 x + sin x cos x - 2 cos ^ 2 x = 0 `.

Це однорідне тригонометричне рівняння другого ступеня, розділимо його ліву та праву частини на `cos^2 x \ne 0`, отримаємо:

`\frac(sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) - \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x + tg x - 2 = 0`. Введемо заміну `tg x=t`, в результаті `t^2 + t - 2=0`. Коріння цього рівняння: `t_1=-2` та `t_2=1`. Тоді:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, `n \in Z`.

Відповідь. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Перехід до половинного кута

приклад. Розв'язати рівняння: `11 sin x - 2 cos x = 10`.

Рішення. Застосуємо формули подвійного кута, в результаті: `22 sin (x/2) cos (x/2) - ``2 cos^2 x/2 + 2 sin^2 x/2=``10 sin^2 x/2 +10 cos^2 x/2`

`4 tg^2 x/2 - 11 tg x/2 +6=0`

Застосувавши описаний вище метод алгебри, отримаємо:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Відповідь. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введення допоміжного кута

У тригонометричному рівнянні `a sin x + b cos x = c`, де a, b, c – коефіцієнти, а x – змінна, розділимо обидві частини на `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `frac c(sqrt (a^2 +b^2))`.

Коефіцієнти в лівій частині мають властивості синуса та косинуса, а саме сума їх квадратів дорівнює 1 та їх модулі не більше 1. Позначимо їх наступним чином: `\frac a(sqrt(a^2+b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2))=C`, тоді:

` cos \ varphi sin x + sin \ varphi cos x = C `.

Докладніше розглянемо на наступному прикладі:

приклад. Розв'язати рівняння: `3 sin x+4 cos x=2`.

Рішення. Розділимо обидві частини рівності на `sqrt (3^2+4^2)`, отримаємо:

`\frac (3 sin x) (sqrt (3^2+4^2))+``\frac(4 cos x)(sqrt (3^2+4^2))=` `frac 2(sqrt (3^2+4^2))`

`3/5 sin x+4/5 cos x=2/5`.

Позначимо `3/5 = cos \ varphi`, `4/5 = sin \ varphi`. Так як ` sin \ varphi> 0 `, ` cos \ varphi> 0 `, то як допоміжний кут візьмемо ` \ varphi = arcsin 4/5 `. Тоді нашу рівність запишемо у вигляді:

`cos \varphi sin x+sin \varphi cos x=2/5`

Застосувавши формулу суми кутів для синуса, запишемо нашу рівність у такому вигляді:

`sin (x+\varphi) = 2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Відповідь. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-раціональні тригонометричні рівняння

Це рівності з дробами, у чисельниках та знаменниках яких є тригонометричні функції.

приклад. Вирішити рівняння. frac (sin x) (1 + cos x) = 1-cos x `.

Рішення. Помножимо та розділимо праву частину рівності на `(1+cos x)`. В результаті отримаємо:

`\frac (sin x)(1+cos x)=``\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=``\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=``\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-``\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Враховуючи, що знаменник рівним бути нулю не може, отримаємо `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Прирівняємо до нуля чисельник дробу: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тоді `sin x=0` або `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Враховуючи, що ` x \ne \pi+2\pi n, n \in Z`, рішеннями будуть `x=2\pi n, n \in Z` та `x=\pi /2+2\pi n` , `n \ in Z`.

Відповідь. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрія та тригонометричні рівняння зокрема застосовуються майже у всіх сферах геометрії, фізики, інженерії. Починається вивчення в 10 класі, обов'язково присутні завдання на ЄДІ, тому постарайтеся запам'ятати всі формули тригонометричних рівнянь - вони вам знадобляться!

Втім, навіть запам'ятовувати їх не потрібно, головне зрозуміти суть і вміти вивести. Це не так складно, як здається. Переконайтеся, переглядаючи відео.