Біографії Характеристики Аналіз

Sin парна або непарна функція. Парні та непарні функції

Парна функція.

Парнийназивається функція, знак якої не змінюється при зміні знака x.

xвиконується рівність f(–x) = f(x). Знак xне впливає на знак y.

Графік парної функції симетричний щодо осі координат (рис.1).

Приклади парної функції:

y= cos x

y = x 2

y = –x 2

y = x 4

y = x 6

y = x 2 + x

Пояснення:
Візьмемо функцію y = x 2 або y = –x 2 .
За будь-якого значення xфункція позитивна. Знак xне впливає на знак y. Графік симетричний щодо осі координат. Це парна функція.

Непарна функція.

Непарноюназивається функція, знак якої змінюється при зміні знака x.

Інакше кажучи, для будь-якого значення xвиконується рівність f(–x) = –f(x).

Графік непарної функції симетричний щодо початку координат (рис.2).

Приклади непарної функції:

y= sin x

y = x 3

y = –x 3

Пояснення:

Візьмемо функцію y = - x 3 .
Усі значення уу ній будуть зі знаком мінус. Тобто знак xвпливає на знак y. Якщо незалежна змінна – позитивне число, те й функція позитивна, якщо незалежна змінна – негативне число, те й функція негативна: f(–x) = –f(x).
Графік функції симетричний щодо початку координат. Це непарна функція.

Властивості парної та непарної функцій:

ПРИМІТКА:

Не всі функції є парними чи непарними. Є функції, які не підкоряються такій градації. Наприклад, функція кореня у = √хне належить ні до парних, ні до непарних функцій (рис.3). При перерахуванні властивостей подібних функцій слід давати відповідний опис: ні парна, ні непарна.

Періодичні функції.

Як ви знаєте, періодичність – це повторюваність певних процесів із певним інтервалом. Функції, що описують ці процеси, називають періодичними функціями. Тобто це функції, у графіках яких є елементи, що повторюються з певними числовими інтервалами.

Як вставити математичні формули на сайт?

Якщо потрібно колись додавати одну-дві математичні формули на веб-сторінку, то найпростіше зробити це, як описано в статті: математичні формули легко вставляються на сайт у вигляді картинок, які автоматично генерує Вольфрам Альфа. Окрім простоти, цей універсальний спосіб допоможе покращити видимість сайту у пошукових системах. Він працює давно (і, гадаю, працюватиме вічно), але морально вже застарів.

Якщо ви постійно використовуєте математичні формули на своєму сайті, я рекомендую вам використовувати MathJax - спеціальну бібліотеку JavaScript, яка відображає математичні позначення у веб-браузерах з використанням розмітки MathML, LaTeX або ASCIIMathML.

Є два способи, як почати використовувати MathJax: (1) за допомогою простого коду можна швидко підключити до вашого сайту скрипт MathJax, який автоматично підвантажуватиметься з віддаленого сервера (список серверів); (2) завантажити скрипт MathJax з віддаленого сервера на свій сервер та підключити до всіх сторінок свого сайту. Другий спосіб – більш складний та довгий – дозволить прискорити завантаження сторінок вашого сайту, і якщо батьківський сервер MathJax з якихось причин стане тимчасово недоступним, це ніяк не вплине на ваш власний сайт. Незважаючи на ці переваги, я вибрав перший спосіб, як більш простий, швидкий і не потребує технічних навичок. Наслідуйте мій приклад, і вже через 5 хвилин ви зможете використовувати всі можливості MathJax на своєму сайті.

Підключити скрипт бібліотеки MathJax з віддаленого сервера можна за допомогою двох варіантів коду, взятого на головному сайті MathJax або на сторінці документації:

Один з цих варіантів коду потрібно скопіювати та вставити в код вашої веб-сторінки, бажано між тегами і або відразу після тега . За першим варіантом MathJax підвантажується швидше і менше гальмує сторінку. Натомість другий варіант автоматично відстежує та підвантажує свіжі версії MathJax. Якщо вставити перший код, його потрібно буде періодично оновлювати. Якщо вставити другий код, то сторінки завантажуватимуться повільніше, зате вам не потрібно буде постійно стежити за оновленнями MathJax.

Підключити MathJax найпростіше в Blogger або WordPress: в панелі керування сайтом додайте віджет, призначений для вставки стороннього коду JavaScript, скопіюйте в нього перший або другий варіант завантаженого коду, представленого вище, і розмістіть віджет ближче до початку шаблону (до речі, це зовсім не обов'язково , оскільки скрипт MathJax завантажується асинхронно). От і все. Тепер вивчіть синтаксис розмітки MathML, LaTeX та ASCIIMathML, і ви готові вставляти математичні формули на веб-сторінки свого сайту.

Будь-який фрактал будується за певним правилом, яке послідовно застосовується необмежену кількість разів. Щоразу називається ітерацією.

Ітеративний алгоритм побудови губки Менгера досить простий: вихідний куб зі стороною 1 ділиться площинами, що паралельні його граням, на 27 рівних кубів. З нього видаляються один центральний куб і 6 прилеглих до нього на грані кубів. Виходить безліч, що складається з 20 менших кубів, що залишилися. Поступаючи так само з кожним із цих кубів, отримаємо безліч, що складається вже з 400 менших кубів. Продовжуючи цей процес безкінечно, отримаємо губку Менгера.

Залежність змінної y від перемінно x, коли кожен значенню x відповідає єдине значення y називається функцією. Для позначення використовують запис y=f(x). Кожна функція має ряд основних властивостей, таких як монотонність, парність, періодичність та інші.

Розглянь докладніше властивість парності.

Функція y=f(x) називається парною, якщо вона задовольняє наступним двом умовам:

2. Значення функції в точці х, що належить області визначення функції, має дорівнювати значення функції в точці -х. Тобто для будь-якої точки х з області визначення функції має виконуватися наступна рівність f(x) = f(-x).

Графік парної функції

Якщо побудувати графік парної функції, він буде симетричний щодо осі Оу.

Наприклад, функція y=x^2 є парною. Перевіримо це. Область визначення вся числова вісь, отже, вона симетрична щодо точки Про.

Візьмемо довільне х=3. f(x)=3^2=9.

f(-x)=(-3)^2=9. Отже f(x) = f(-x). Таким чином, у нас виконуються обидві умови, отже, функція парна. Нижче наведено графік функції y=x^2.

На малюнку видно, що графік симетричний щодо осі Оу.

Графік непарної функції

Функція y=f(x) називається непарною, якщо вона задовольняє наступним двом умовам:

1. Область визначення даної функції має бути симетрична щодо точки О. Тобто якщо деяка точка a належить області визначення функції, то відповідна точка -a теж повинна належати області визначення заданої функції.

2. Для будь-якої точки х з області визначення функції повинна виконуватися така рівність f(x) = -f(x).

Графік непарної функції симетричний щодо точки Про - початку координат. Наприклад, функція y=x^3 є непарною. Перевіримо це. Область визначення вся числова вісь, отже, вона симетрична щодо точки Про.

Візьмемо довільне х=2. f(x)=2^3=8.

f(-x)=(-2)^3=-8. Отже f(x) = -f(x). Таким чином, у нас виконуються обидві умови, отже, функція непарна. Нижче наведено графік функції y=x^3.

На малюнку наочно представлено, що непарна функція y=x^3 симетрична щодо початку координат.

Перетворення графіків.

Словесний опис функції.

Графічний метод.

Графічний спосіб завдання функції є найнаочнішим і найчастіше застосовується у техніці. У математичному аналізі графічний спосіб завдання функцій використовується як ілюстрація.

Графіком функції f називають безліч всіх точок (x; y) координатної площини, де y = f (x), а x «пробігає» всю область визначення цієї функції.

Підмножина координатної площини є графіком будь-якої функції, якщо вона має не більше однієї загальної точки з будь-якої прямої, паралельної осі Оу.

приклад. Чи є графіками функцій фігури, зображені нижче?

Перевагою графічного завдання є його наочність. Відразу видно, як поводиться функція, де зростає, де зменшується. За графіком одразу можна дізнатися деякі важливі характеристики функції.

Взагалі, аналітичний і графічний способи завдання функції йдуть пліч-о-пліч. Робота із формулою допомагає побудувати графік. А графік часто нагадує рішення, які у формулі і помітиш.

Майже будь-який учень знає три способи завдання функції, які ми щойно розглянули.

Спробуємо відповісти на запитання: "А чи існують інші способи завдання функції?"

Такий спосіб є.

Функцію можна цілком однозначно поставити словами.

Наприклад, функцію у = 2х можна задати наступним словесним описом: кожному дійсному значенню аргументу х ставиться у відповідність його подвоєне значення. Правило встановлено, функцію встановлено.

Більше того, словесно можна задати функцію, яку формулою задати вкрай скрутно, а то й неможливо.

Наприклад: кожному значенню натурального аргументу х ставиться у відповідність сума цифр, з яких складається значення х. Наприклад, якщо х=3, то у=3. Якщо х = 257, то у = 2 +5 +7 = 14. І так далі. Формулою це записати проблематично. А ось табличку легко скласти.

Спосіб словесного опису - досить рідко використовуваний спосіб. Але іноді трапляється.

Якщо є закон однозначної відповідності між х і у – значить, є функція. Який закон, у якій формі він виражений – формулою, табличкою, графіком, словами – суті справи не змінює.

Розглянемо функції, області визначення яких симетричні щодо початку координат, тобто. для будь-кого хз області визначення число (- х) також належить області визначення. Серед таких функцій виділяють парні та непарні.

Визначення.Функція f називається парної, якщо для будь-кого хз її галузі визначення

приклад.Розглянемо функцію

Вона є парною. Перевіримо це.



Для будь-кого хвиконані рівності

Таким чином, у нас виконуються обидві умови, отже, функція парна. Нижче наведено графік цієї функції.

Визначення.Функція f називається непарною, якщо для будь-кого хз її галузі визначення

приклад. Розглянемо функцію

Вона є непарною. Перевіримо це.

Область визначення вся числова вісь, отже, вона симетрична щодо точки (0;0).

Для будь-кого хвиконані рівності

Таким чином, у нас виконуються обидві умови, отже, функція непарна. Нижче наведено графік цієї функції.

Графіки, зображені першому і третьому малюнках симетричні щодо осі ординат, а графіки, зображені другою і четвертому малюнкам симетричні щодо початку координат.

Які функції, графіки яких зображені на малюнках є парними, а які непарними?

Парність і непарність функції одна із основних її властивостей, і парність займає значну частину шкільного курсу з математики. Вона багато визначає характер поведінки функції і значно полегшує побудову відповідного графіка.

Визначимо парність функції. Власне кажучи, досліджувану функцію вважають парною, якщо протилежних значень незалежної змінної (x), що у її області визначення, відповідні значення y (функції) виявляться рівними.

Дамо більш суворе визначення. Розглянемо деяку функцію f(x), яка задана в області D. Вона буде парною, якщо для будь-якої точки x, що знаходиться в області визначення:

  • -x (протилежна точка) також лежить у цій галузі визначення,
  • f(-x) = f(x).

З наведеного визначення випливає умова, необхідна області визначення подібної функції, а саме, симетричність щодо точки Про, що є початком координат, оскільки якщо деяка точка b міститься в області визначення парної функції, то відповідна точка - b теж лежить в цій області. З вищесказаного, таким чином, випливає висновок: парна функція має симетричний до осі ординат (Oy) вигляд.

Як на практиці визначити парність функції?

Нехай задається з допомогою формули h(x)=11^x+11^(-x). Наслідуючи алгоритм, що випливає безпосередньо з визначення, досліджуємо насамперед її область визначення. Очевидно, що вона визначена для всіх значень аргументу, тобто перша умова виконана.

Наступним кроком підставимо замість аргументу (x) протилежне значення (-x).
Отримуємо:
h(-x) = 11^(-x) + 11^x.
Оскільки додавання задовольняє комутативному (переміщувальному) закону, очевидно, h(-x) = h(x) і задана функціональна залежність - парна.

Перевіримо парність функції h(x)=11^x-11^(-x). Наслідуючи той самий алгоритм, отримуємо, що h(-x) = 11^(-x) -11^x. Винісши мінус, у підсумку, маємо
h(-x)=-(11^x-11^(-x))=- h(x). Отже, h(x) – непарна.

До речі, слід нагадати, що є функції, які неможливо класифікувати за цими ознаками, їх називають ні парними, ні непарними.

Парні функції мають низку цікавих властивостей:

  • в результаті складання подібних функцій одержують парну;
  • в результаті віднімання таких функцій отримують парну;
  • парна, також парна;
  • в результаті множення двох таких функцій одержують парну;
  • в результаті множення непарної та парної функцій отримують непарну;
  • в результаті поділу непарної та парної функцій отримують непарну;
  • похідна такої функції – непарна;
  • якщо звести непарну функцію квадрат, отримаємо парну.

Чітність функції можна використовувати під час вирішення рівнянь.

Щоб вирішити рівняння типу g(x) = 0, де ліва частина рівняння є парною функцією, буде цілком достатньо знайти її рішення для невід'ємних значень змінної. Отримані коріння рівняння необхідно поєднати з протилежними числами. Один із них підлягає перевірці.

Це успішно застосовують для вирішення нестандартних завдань з параметром.

Наприклад, чи є значення параметра a, при якому рівняння 2x^6-x^4-ax^2=1 матиме три корені?

Якщо врахувати, що змінна входить у рівняння парних ступенях, то зрозуміло, що заміна х на - х задане рівняння не змінить. Звідси випливає, що якщо деяке число є його коренем, то ним є і протилежне число. Висновок очевидний: коріння рівняння, відмінне від нуля, входить у безліч його рішень «парами».

Зрозуміло, що саме число 0 не є, тобто число коренів подібного рівняння може бути парним і, природно, ні за якого значення параметра воно не може мати трьох коренів.

І це число коренів рівняння 2^x+ 2^(-x)=ax^4+2x^2+2 може бути непарним, причому будь-якого значення параметра. Справді, легко перевірити, що багато коренів даного рівняння містить рішення «парами». Перевіримо, чи є 0 коренем. При підстановці його рівняння, отримуємо 2=2 . Таким чином, окрім «парних» 0 також є коренем, що й доводить їх непарну кількість.