Біографії Характеристики Аналіз

Власні числа та власні вектори квадратної матриці. §7

Вектор Х ≠ 0 називають власним векторомлінійного оператора із матрицею А, якщо знайдеться таке число, що АХ =Х.

При цьому число  називають власним значеннямоператора (матриці А), що відповідає вектору х.

Інакше кажучи, власний вектор – це вектор, який під впливом лінійного оператора перетворюється на колінеарний вектор, тобто. просто множиться на кілька. На відміну від нього, невласні вектори перетворюються складніше.

Запишемо визначення власного вектора як системи рівнянь:

Перенесемо всі складові в ліву частину:

Останню систему можна записати в матричній формі таким чином:

(А - Е)Х = О

Отримана система завжди має нульове рішення Х = О. Такі системи, у яких усі вільні члени дорівнюють нулю, називають однорідними. Якщо матриця такої системи – квадратна, і її визначник не дорівнює нулю, то за формулами Крамера ми завжди матимемо єдине рішення – нульове. Можна довести, що система має ненульові рішення і тоді, коли визначник цієї матриці дорівнює нулю, тобто.

|А - Е| = = 0

Це рівняння з невідомим  називають характеристичним рівнянням(характеристичним багаточленом) матриці А (лінійного оператора).

Можна довести, що характеристичний багаточлен лінійного оператора залежить від вибору базису.

Наприклад, знайдемо власні значення та власні вектори лінійного оператора, заданого матрицею А = .

І тому складемо характеристичне рівняння |А - Е| = = (1 -) 2 – 36 = 1 – 2+ 2 - 36 = 2 – 2- 35; Д = 4 + 140 = 144; власні значення  1 = (2 - 12)/2 = -5;  2 = (2 + 12)/2 = 7.

Щоб знайти власні вектори, вирішуємо дві системи рівнянь

(А + 5Е) Х = О

(А - 7Е) Х = О

Для першої з них розширена матриця набуде вигляду

,

звідки х 2 = с, х 1 + (2/3) с = 0; х 1 = -(2/3)з, тобто. Х(1) = (-(2/3)с; с).

Для другої з них розширена матриця набуде вигляду

,

звідки х 2 = з 1, х 1 - (2/3) з 1 = 0; х 1 = (2/3) з 1, тобто. Х (2) = ((2/3) з 1; з 1).

Таким чином, власними векторами цього лінійного оператора є всі вектори виду (-(2/3)з; с) з власним значенням (-5) і всі вектори виду ((2/3)з 1; з 1) з власним значенням 7 .

Можна довести, що матриця оператора А в базисі, що складається з власних векторів, є діагональною і має вигляд:

,

де  i – власні значення цієї матриці.

Правильно і зворотне: якщо матриця А в деякому базисі є діагональною, всі вектори цього базису будуть власними векторами цієї матриці.

Також можна довести, що якщо лінійний оператор має n попарно різних власних значень, відповідні їм власні вектори лінійно незалежні, а матриця цього оператора у відповідному базисі має діагональний вигляд.

З матрицею А якщо знайдеться таке число l, що АХ = lХ.

У цьому число l називають власним значеннямоператора (матриці А), що відповідає вектору Х.

Інакше кажучи, власний вектор - це вектор, який під впливом лінійного оператора перетворюється на колінеарний вектор, тобто. просто множиться на кілька. На відміну від нього, невласні вектори перетворюються складніше.

Запишемо визначення власного вектора як системи рівнянь:

Перенесемо всі складові в ліву частину:

Останню систему можна записати в матричній формі таким чином:

(А - lЕ) Х = О

Отримана система завжди має нульове рішення Х = О. Такі системи, у яких усі вільні члени дорівнюють нулю, називають однорідними. Якщо матриця такої системи – квадратна, і її визначник не дорівнює нулю, то за формулами Крамера ми завжди отримаємо єдине рішення – нульове. Можна довести, що система має ненульові рішення і тоді, коли визначник цієї матриці дорівнює нулю, тобто.

|А - lЕ| = = 0

Це рівняння з невідомим l називають характеристичним рівнянням (характеристичним багаточленом) матриці А (лінійного оператора).

Можна довести, що характеристичний багаточлен лінійного оператора залежить від вибору базису.

Наприклад, знайдемо власні значення та власні вектори лінійного оператора, заданого матрицею А = .

І тому складемо характеристичне рівняння |А - lЕ| = = (1 - l) 2 - 36 = 1 - 2l + l 2 - 36 = l 2 - 2l - 35 = 0; Д = 4 + 140 = 144; власні значення l 1 = (2 - 12) / 2 = -5; l 2 = (2 + 12) / 2 = 7.

Щоб знайти власні вектори, вирішуємо дві системи рівнянь

(А + 5Е) Х = О

(А - 7Е) Х = О

Для першої з них розширена матриця набуде вигляду

,

звідки х 2 = с, х 1 + (2/3) с = 0; х 1 = -(2/3)з, тобто. Х(1) = (-(2/3)с; с).

Для другої з них розширена матриця набуде вигляду

,

звідки х 2 = з 1, х 1 - (2/3) з 1 = 0; х 1 = (2/3) з 1, тобто. Х (2) = ((2/3) з 1; з 1).

Таким чином, власними векторами цього лінійного оператора є всі вектори виду (-(2/3)з; с) з власним значенням (-5) і всі вектори виду ((2/3)з 1; з 1) з власним значенням 7 .

Можна довести, що матриця оператора А в базисі, що складається з власних векторів, є діагональною і має вигляд:

,

де l i - Власні значення цієї матриці.

Правильно і зворотне: якщо матриця А в деякому базисі є діагональною, всі вектори цього базису будуть власними векторами цієї матриці.

Також можна довести, що якщо лінійний оператор має n попарно різних власних значень, відповідні їм власні вектори лінійно незалежні, а матриця цього оператора у відповідному базисі має діагональний вигляд.


Пояснимо це на попередньому прикладі. Візьмемо довільні ненульові значення з і з 1 але такі, щоб вектори Х (1) і Х (2) були лінійно незалежними, тобто. утворили б базис. Наприклад, нехай з = з 1 = 3, тоді Х (1) = (-2; 3), Х (2) = (2; 3).

Переконаємося у лінійній незалежності цих векторів:

12 ≠ 0. У цьому новому базисі матриця А набуде вигляду А * = .

Щоб переконатися в цьому, скористаємося формулою А* = С-1АС. Спочатку знайдемо С-1.

З -1 = ;

Квадратичні форми

Квадратичною формою f(х 1 , х 2 , х n) від n змінних називають суму, кожен член якої є або квадратом однієї зі змінних, або добутком двох різних змінних, взятим з деяким коефіцієнтом: f(х 1 , х 2 , х n) = (a ij = a ji).

Матрицю А, складену з цих коефіцієнтів, називають матрицеюквадратичної форми. Це завжди симетричнаматриця (тобто матриця, симетрична щодо головної діагоналі, a ij = a ji).

У матричному записі квадратична форма має вигляд f(Х) = Х Т AX, де

Справді

Наприклад, запишемо у матричному вигляді квадратичну форму.

Для цього знайдемо матрицю квадратичної форми. Її діагональні елементи дорівнюють коефіцієнтам при квадратах змінних, інші елементи - половинам відповідних коефіцієнтів квадратичної форми. Тому

Нехай матриця-стовпець змінних X отримана невиродженим лінійним перетворенням матриці-стовпця Y, тобто. X = CY, де - невироджена матриця n-го порядку. Тоді квадратична форма f(X) = Х T АХ = (CY) T A(CY) = (Y T C T)A(CY) = Y T (C T AC)Y.

Таким чином, при невиродженому лінійному перетворенні З матриця квадратичної форми набуває вигляду: А * = C T AC.

Наприклад, знайдемо квадратичну форму f(y 1 , y 2), отриману з квадратичної форми f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 лінійним перетворенням.

Квадратична форма називається канонічної(має канонічний вигляд), якщо її коефіцієнти a ij = 0 при i ≠ j, тобто.
f(х 1, х 2, х n) = a 11 x 1 2 + a 22 x 2 2 + a nn x n 2 = .

Її матриця є діагональною.

Теорема(Доказ тут не наводиться). Будь-яка квадратична форма може бути приведена до канонічного виду за допомогою невиродженого лінійного перетворення.

Наприклад, наведемо до канонічного вигляду квадратичну форму
f(х 1, х 2, х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 .

Для цього спочатку виділимо повний квадрат при змінній х 1:

f(х 1 , х 2 , х 3) = 2(x 1 2 + 2х 1 х 2 + х 2 2) - 2х 2 2 - 3х 2 2 - х 2 х 3 = 2(x 1 + х 2) 2 - 5х2 2-х 2х3.

Тепер виділяємо повний квадрат при змінній х 2:

f(х 1 , х 2 , х 3) = 2(x 1 + х 2) 2 - 5(х 2 2 + 2* х 2 *(1/10)х 3 + (1/100)х 3 2) + (5/100) х 3 2 =
= 2 (x 1 + х 2) 2 - 5 (х 2 - (1/10) х 3) 2 + (1/20) х 3 2 .

Тоді невироджене лінійне перетворення y 1 = x 1 + х 2 , y 2 = х 2 + (1/10)х 3 і y 3 = x 3 наводить цю квадратичну форму до канонічного вигляду f(y 1 , y 2 , y 3) = 2y 1 2 - 5y 2 2 + (1/20)y 3 2 .

Зазначимо, що канонічний вид квадратичної форми визначається неоднозначно (одна й та сама квадратична форма може бути приведена до канонічного вигляду різними способами). Однак отримані різними способами канонічні форми мають низку загальних властивостей. Зокрема, кількість доданків з позитивними (негативними) коефіцієнтами квадратичної форми не залежить від способу приведення форми до цього виду (наприклад, у розглянутому прикладі завжди буде два негативні та один позитивний коефіцієнт). Цю властивість називають законом інерціїквадратичних форм.

Впевнимося в цьому, по-іншому привівши ту ж квадратичну форму до канонічного вигляду. Почнемо перетворення зі змінною х 2:

f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 = -3х 2 2 - х 2 х 3 + 4х 1 х 2 + 2x 1 2 = - 3(х 2 2 +
+ 2* х 2 ((1/6) х 3 - (2/3)х 1) + ((1/6) х 3 - (2/3)х 1) 2) + 3((1/6) х 3 - (2/3)х 1) 2 + 2x 1 2 =
= -3(х 2 + (1/6) х 3 - (2/3)х 1) 2 + 3((1/6) х 3 + (2/3)х 1) 2 + 2x 1 2 = f (y 1 , y 2 , y 3) = -3y 1 2 -
+3y 2 2 + 2y 3 2 де y 1 = - (2/3)х 1 + х 2 + (1/6) х 3 , y 2 = (2/3)х 1 + (1/6) х 3 та y 3 = x 1 . Тут негативний коефіцієнт -3 при y 1 і два позитивні коефіцієнти 3 і 2 при y 2 і y 3 (а при використанні іншого способу ми отримали негативний коефіцієнт (-5) при y 2 і два позитивних: 2 при y 1 і 1/20 за y 3).

Також слід зазначити, що ранг матриці квадратичної форми, званий рангом квадратичної форми, дорівнює числу відмінних від нуля коефіцієнтів канонічної форми і змінюється при лінійних перетвореннях.

Квадратичну форму f(X) називають позитивно (негативно) певною, якщо за всіх значеннях змінних, не рівних одночасно нулю, вона позитивна, тобто. f(X) > 0 (негативна, тобто.
f(X)< 0).

Наприклад, квадратична форма f 1 (X) = x 1 2 + х 2 2 – позитивно визначена, т.к. є сумою квадратів, а квадратична форма f 2 (X) = -x 1 2 + 2x 1 х 2 - х 2 2 - негативно визначена, т.к. представляє її можна подати у вигляді f 2 (X) = -(x 1 - х 2) 2 .

У більшості практичних ситуації встановити знаковизначеність квадратичної форми дещо складніше, тому для цього використовують одну з наступних теорем (сформулюємо їх без доказів).

Теорема. Квадратична форма є позитивно (негативно) певною тоді і лише тоді, коли всі власні значення її матриці позитивні (негативні).

Теорема(критерій Сильвестра). Квадратична форма є позитивно визначеною тоді і лише тоді, коли головні мінори матриці цієї форми позитивні.

Головним (кутовим) мінором k-го порядку матриці А n-го порядку називають визначником матриці, що складається з перших k рядків і стовпців матриці А().

Зазначимо, що для негативно визначених квадратичних форм знаки головних мінорів чергуються, причому мінор першого порядку має бути негативним.

Наприклад, досліджуємо на знаковизначеність квадратичну форму f(х 1, х 2) = 2x 1 2 + 4х 1 х 2 + 3х 2 2 .

= (2 - l) *
* (3 - l) - 4 = (6 - 2l - 3l + l 2) - 4 = l 2 - 5l + 2 = 0; D = 25 – 8 = 17;
. Отже, квадратична форма – позитивно визначена.

Спосіб 2. Головний мінор першого порядку матриці А D 1 = a 11 = 2 > 0. Головний мінор другого порядку D 2 = = 6 – 4 = 2 > 0. Отже, за критерієм Сильвестра квадратична форма – позитивно визначена.

Досліджуємо на знаковизначеність іншу квадратичну форму, f(х 1, х 2) = -2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Спосіб 1. Побудуємо матрицю квадратичної форми А = . Характеристичне рівняння матиме вигляд = (-2 - l) *
*(-3 - l) - 4 = (6 + 2l + 3l + l 2) - 4 = l 2 + 5l + 2 = 0; D = 25 – 8 = 17;
. Отже, квадратична форма – негативно визначена.

Спосіб 2. Головний мінор першого порядку матриці А D 1 = a 11 =
= -2 < 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 >0. Отже, за критерієм Сильвестра квадратична форма – негативно визначена (знаки головних мінорів чергуються, починаючи з мінусу).

І як ще один приклад досліджуємо на знаковизначеність квадратичну форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Спосіб 1. Побудуємо матрицю квадратичної форми А = . Характеристичне рівняння матиме вигляд = (2 - l) *
*(-3 - l) - 4 = (-6 - 2l + 3l + l 2) - 4 = l 2 + l - 10 = 0; D = 1 + 40 = 41;
.

Одне із цих чисел негативно, а інше - позитивно. Знаки своїх значень різні. Отже, квадратична форма може бути ні негативно, ні позитивно певної, тобто. ця квадратична форма не є знаковизначеною (може набувати значень будь-якого знака).

Спосіб 2. Головний мінор першого порядку матриці А D 1 = a 11 = 2 > 0. Головний мінор другого порядку D 2 = = -6 - 4 = -10< 0. Следовательно, по критерию Сильвестра квадратичная форма не является знакоопределенной (знаки главных миноров разные, при этом первый из них - положителен).

На зображенні бачимо трансформації зсуву, що відбувається з Джокондою. Синій вектор змінює напрямок, а червоний – ні. Тому червоний є власним вектором такого перетворення, синій – ні. Оскільки червоний вектор ні розтягнувся, ні стиснувся, його значення дорівнює одиниці. Всі вектори колінеарні червоні теж власні (англ. eigenvector)квадратної матриці (С власним значенням(англ. eigenvalue)) – це ненульовий вектор , для якого виконується співвідношення

Де? це певний скаляр, тобто дійсне чи комплексне число.
Тобто власні вектори матриці A- це ненульові вектори, які під дією лінійного перетворення задається матрицею Aне змінюють напрями, але можуть змінювати довжину на коефіцієнт?
Матриця розмірами має не більше Nвласних векторів та власних значень, що відповідають їм.
Співвідношення (*) має сенс також для лінійного оператора у векторному просторі V.Якщо цей простір – кінцевомірний, то оператор можна записати у вигляді матриці щодо безумовно базису. V.
Оскільки власні вектори та власні значення було позначено без застосування координат, які не залежать від вибору базису. Тому такі матриці мають однакові власні значення.
Провідну роль розумінні своїх значень матриць грає теорема Гамільтона-Келі. З неї випливає, що власні значення матриці Aі тільки вони є корінням характеристичного полінома матриці A:

p (?) є поліномом ступеня n,отже за основною теоремою алгебри, існує рівно nкомплексних власних значень з огляду на їх кратності.
Отже, матриця Aмає не більше nвласних значень (але безліч власних векторів кожному за них).
Запишемо характеристичний поліном через його коріння:

Кратність кореня характеристичного полінома матриці називається алгебраїчною кратністювласного значення
Сукупність всіх власних значень матриці або лінійного оператора в кінцевому векторному просторі називається спектромматриці чи лінійного оператора. (Ця термінологія видозмінюється для нескінченозмірних векторних просторів: у загальному випадку, до спектра оператора можуть належати?, які не є власними значеннями.)
Завдяки зв'язку характеристичного полінома матриці з її власними значеннями останні ще називають характеристичними числамиматриці.
Для кожного власного значення Отримаємо свою систему рівнянь:

Що матиме лінійно-незалежних рішень.
Сукупність всіх рішень системи утворює лінійний підпростір розмірності та називається власним простором(англ. eigenspace)матриці з власним значенням.
Розмірність власного простору називається геометричною кратністювідповідного власного значення?
Усі власні простори є інваріантними підпросторами для .
Якщо існують не менше двох лінійно-незалежних власних векторів з однаковим власним значенням?, то таке власне значення називається виродженим.Ця термінологія використовується переважно у разі, якщо геометрична і алгебраїчна кратності власних значень збігаються, наприклад, для ермітових матриць.

Де – Квадратна матриця розміру n x n,-Той стовпець якої є вектор, А - це діагональна матриця з відповідними значеннями.

Проблемою власних значень називається завдання знаходження власних векторів та чисел матриці.
За визначенням (за допомогою характеристичного рівняння) можна знаходити лише власні значення матриць розмірності менше п'яти. Характеристичне рівняння має рівний ступінь матриці. Для більших ступенів знаходження рішень рівняння стає дуже проблематичним, тому використовують різноманітні чисельні методи
Різні завдання вимагають отримання різної кількості власних значень. Тому розрізняють кілька проблем пошуку власних значень, кожної з яких використовують свої методи.
Здавалося б часткова проблема своїх значень є частковою проблемою повної, і вирішується тими самими методами як і повна. Однак, методи, що застосовуються до приватних завдань, набагато ефективніші, тому можуть застосовуватися до матриць великої розмірності (наприклад, у ядерній фізиці виникають проблеми знаходження власних значень для матриць розмірності 10 3 – 10 6).
Метод Якобі

Одним із найстаріших і найбільш загальних підходів до вирішення повної проблеми власних значень є метод Якобі, вперше був опублікований у 1846 році.
Метод застосовують до симетричної матриці A
Це простий ітеративний алгоритм, у якому матриця із власними векторами обчислюється послідовністю множень.

Власні значення (числа) та власні вектори.
Приклади рішень

Будь собою


З обох рівнянь випливає, що .

Припустимо, тоді: .

В результаті: - Другий власний вектор.

Повторимо важливі моменти розв'язання:

- Отримана система обов'язково має загальне рішення (рівняння лінійно залежні);

- «Ігрек» підбираємо таким чином, щоб він був цілим і перша «іксова» координата - цілою, позитивною і якнайменше.

– перевіряємо, що окреме рішення задовольняє кожному рівнянню системи.

Відповідь .

Проміжних «контрольних точок» було цілком достатньо, тому перевірка рівностей у принципі справа зайва.

У різних джерелах інформації координати власних векторів часто записують над стовпці, а рядки, наприклад: (і, якщо чесно, я сам звик записувати їх рядками). Такий варіант прийнятний, але у світлі теми лінійних перетвореньтехнічно зручніше використовувати вектори-стовпці.

Можливо, рішення здалося вам дуже довгим, але це тільки тому, що я докладно прокоментував перший приклад.

Приклад 2

Матриці

Тренуємося самостійно! Зразок чистового оформлення завдання наприкінці уроку.

Іноді потрібно виконати додаткове завдання, а саме:

записати канонічне розкладання матриці

Що це таке?

Якщо власні вектори матриці утворюють базис, то вона уявна у вигляді:

Де – матриця складена з координат власних векторів, – діагональнаматриця з відповідними власними числами.

Таке розкладання матриці називають канонічнимабо діагональним.

Розглянемо матрицю першого прикладу. Її власні вектори лінійно незалежні(Неколлінеарні) і утворюють базис. Складемо матрицю з їх координат:

на головної діагоналіматриці у відповідному порядкурозташовуються власні числа, інші елементи дорівнюють нулю:
– ще раз наголошую на важливості порядку: «двійка» відповідає 1-му вектору і тому розташовується в 1-му стовпці, «трійка» – 2-му вектору.

За звичайним алгоритмом знаходження зворотної матриціабо методом Гауса-Жорданазнаходимо . Ні, це не друкарська помилка! - Перед вами рідкісна, як сонячне затемнення подія, коли зворотна збіглася з вихідною матрицею.

Залишилося записати канонічне розкладання матриці:

Систему можна вирішити за допомогою елементарних перетворень і в наступних прикладах ми вдамося до цього методу. Але тут набагато швидше спрацьовує «шкільний» спосіб. З 3-го рівняння виразимо: - Підставимо в друге рівняння:

Оскільки перша координата нульова, то отримуємо систему , з кожного рівняння якої випливає, що .

І знову зверніть увагу на обов'язкову наявність лінійної залежності. Якщо виходить лише тривіальне рішення , або неправильно знайдено власне число, або з помилкою складена / вирішена система.

Компактні координати дає значення

Власний вектор:

І ще раз – перевіряємо, що знайдене рішення задовольняє кожному рівнянню системи. У наступних пунктах та в наступних завданнях рекомендую прийняти це побажання за обов'язкове правило.

2) Для власного значення за таким же принципом отримуємо таку систему:

З 2-го рівняння системи виразимо: - Підставимо в третє рівняння:

Оскільки «зетова» координата дорівнює нулю, то отримуємо систему , з кожного рівняння якої випливає лінійна залежність .

Нехай

Перевіряємо, що рішення задовольняє кожному рівняння системи.

Отже, власний вектор: .

3) І, нарешті, власному значенню відповідає система:

Друге рівняння виглядає найпростішим, тому з нього висловимо і підставимо в 1-е та 3-е рівняння:

Все добре - виявилася лінійна залежність, яку підставляємо у вираз:

Через війну «ікс» і «игрек» виявилися виражені через «зет»: . На практиці не обов'язково домагатися саме таких взаємозв'язків, у деяких випадках зручніше висловити і через або через. Або навіть «паровозиком» – наприклад, «ікс» через «гравець», а «гравець» через «зет»

Припустимо, тоді:

Перевіряємо, що знайдене рішення задовольняє кожному рівнянню системи та записуємо третій власний вектор

Відповідь: власні вектори:

Геометрично ці вектори задають три різні просторові напрямки. ("туди назад"), за котрими лінійне перетворенняпереводить ненульові вектори (власні вектори) в колінеарні вектори.

Якби за умовою потрібно було знайти канонічне розкладання , то це можливо, т.к. різним своїм числам відповідають різні лінійно незалежні власні вектори. Складаємо матрицю з їх координат, діагональну матрицю з відповіднихвласних значень та знаходимо зворотну матрицю .

Якщо ж за умовою потрібно записати матрицю лінійного перетворення в базисі із власних векторів, То відповідь даємо у вигляді . Різниця є, і різниця суттєва!Бо ця матриця – є матриця «де».

Завдання з більш простими обчисленнями для самостійного вирішення:

Приклад 5

Знайти власні вектори лінійного перетворення, заданого матрицею

При знаходженні своїх чисел постарайтеся не доводити справу до многочлена третього ступеня. Крім того, ваші рішення систем можуть відрізнятись від моїх рішень – тут немає однозначності; та вектори, які ви знайдете, можуть відрізнятись від векторів зразка з точністю до пропорційності їх відповідних координат. Наприклад, і . Естетичніше уявити відповідь у вигляді , але нічого страшного, якщо зупиніться і на другому варіанті. Однак усьому є розумні межі, версія виглядає вже не дуже добре.

Зразковий чистовий зразок оформлення завдання наприкінці уроку.

Як вирішувати завдання у разі кратних власних чисел?

Загальний алгоритм залишається незмінним, але тут є свої особливості, і деякі ділянки рішення доцільно витримати в більш строгому академічному стилі:

Приклад 6

Знайти власні числа та власні вектори

Рішення

Звичайно ж, оприбуткуємо казковий перший стовпець:

І, після розкладання квадратного тричлена на множники:

В результаті отримані власні числа, два з яких є кратними.

Знайдемо власні вектори:

1) З одиноким солдатом розробимося за «спрощеною» схемою:

З останніх двох рівнянь чітко проглядається рівність, яке, очевидно, слід підставити в 1-е рівняння системи:

Кращої комбінації не знайти:
Власний вектор:

2-3) Тепер знімаємо пару вартових. В даному випадку може вийти або два, або одинВласний вектор. Незважаючи на кратність коренів, підставимо значення в визначник , який приносить нам наступну однорідну систему лінійних рівнянь:

Власні вектори – це точно вектори
фундаментальної системи рішень

Власне, протягом усього уроку ми тільки й займалися тим, що знаходили вектори фундаментальної системи. Просто до певного часу цей термін особливо не був потрібний. До речі, ті спритні студенти, які у маскхалатах проскочили тему однорідних рівнянь, будуть змушені вкурити її зараз.


Єдина дія полягала у видаленні зайвих рядків. В результаті отримана матриця "один на три" з формальною "сходинкою" посередині.
- Базова змінна, - вільні змінні. Вільних змінних дві, отже, векторів фундаментальної системи теж два.

Висловимо базову змінну через вільні змінні: . Нульовий множник перед «іксом» дозволяє приймати йому будь-які значення (що добре видно і з системи рівнянь).

У контексті цього завдання загальне рішення зручніше записати не в рядок, а в стовпець:

Парі відповідає власний вектор:
Парі відповідає власний вектор:

Примітка : досвідчені читачі можуть підібрати дані вектори та усно – просто аналізуючи систему , але тут потрібні деякі знання: змінних - три, ранг матриці системи– одиниця, отже, фундаментальна система рішеньскладається із 3 – 1 = 2 векторів. Втім, знайдені вектори чудово проглядаються і без цих знань на інтуїтивному рівні. У цьому навіть «красивее» запишеться третій вектор: . Однак застерігаю, в іншому прикладі простого підбору може і не виявитися, саме тому застереження призначене для досвідчених людей. Крім того, а чому б не взяти як третій вектор, скажімо, ? Адже його координати теж задовольняють кожному рівняння системи і вектори. лінійно незалежні. Такий варіант, в принципі, придатний, але «кривуватий», оскільки «інший» вектор є лінійною комбінацією векторів фундаментальної системи.

Відповідь: власні числа: , власні вектори:

Аналогічний приклад для самостійного вирішення:

Приклад 7

Знайти власні числа та власні вектори

Зразок чистового оформлення наприкінці уроку.

Слід зазначити, що й у 6-му та 7-му прикладі виходить трійка лінійно незалежних власних векторів, і тому вихідна матриця представима в канонічному розкладанні . Але така малина буває далеко не у всіх випадках:

Приклад 8


Рішення: складемо і розв'яжемо характеристичне рівняння:

Визначник розкриємо по першому стовпцю:

Подальші спрощення проводимо згідно з розглянутою методикою, уникаючи багаточлена 3-го ступеня:

- Власні значення.

Знайдемо власні вектори:

1) З коренем труднощів немає:

Не дивуйтесь, крім комплекту в ході також змінні - різниці тут ніякої.

З 3-го рівняння виразимо - підставимо в 1-е та 2-е рівняння:

З обох рівнянь випливає:

Нехай тоді:

2-3) Для кратних значень отримуємо систему .

Запишемо матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду: