Біографії Характеристики Аналіз

Спрощений дискримінант. Квадратні рівняння - приклади з рішенням, особливості та формули

Дискримінант – багатозначний термін. У цій статті мова піде про дискримінанта багаточлена, який дозволяє визначити, чи має цей багаточлен дійсні рішення. Формула для квадратного багаточлена зустрічається у шкільному курсі алгебри та аналізу. Як знайти дискримінант? Що потрібне для вирішення рівняння?

Квадратним багаточленом або рівнянням другого ступеня називається i * w ^ 2 + j * w + k дорівнює 0, де "i" і "j" - перший і другий коефіцієнт відповідно, "k" - константа, яку іноді називають "вільним членом", а "w" - змінна. Його корінням виявляться всі значення змінної, у яких воно перетворюється на тотожність. Таку рівність допустимо переписати, як добуток i, (w - w1) і (w - w2) дорівнює 0. У цьому випадку очевидно, що якщо коефіцієнт "i" не звертається в нуль, то функція в лівій частині стане нульовою тільки у випадку, якщо x набуває значення w1 або w2. Ці значення є результатом прирівнювання багаточлену до нуля.

Для знаходження значення змінної, у якому квадратний многочлен перетворюється на нуль, використовується допоміжна конструкція, побудована з його коефіцієнтах і названа дискримінантом. Ця конструкція розраховується згідно з формулою D дорівнює j * j - 4 * i * k. Для чого вона використовується?

  1. Вона каже, чи є дійсні результати.
  2. Вона допомагає їх вирахувати.

Як це значення показує наявність речових коренів:

  • Якщо воно позитивне, то можна знайти два корені в ділянці дійсних чисел.
  • Якщо дискримінант дорівнює нулю, то обидва рішення збігаються. Можна сказати, що є лише одне рішення, і воно з області речових чисел.
  • Якщо дискримінант менше нуля, то багаточлен відсутній речові корені.

Варіанти розрахунків для закріплення матеріалу

Для суми (7 * w ^ 2; 3 * w; 1) дорівнює 0розраховуємо D за формулою 3 * 3 - 4 * 7 * 1 = 9 - 28 отримуємо -19. Значення дискримінанта нижче за нуль говорить про відсутність результатів на дійсній прямій.

Якщо розглянути 2 * w ^ 2 - 3 * w + 1 еквівалентний 0, то D розраховується як (-3) у квадраті за вирахуванням добутку чисел (4; 2; 1) і дорівнює 9 - 8, тобто 1. Позитивне значення говорить про два результати на речовій прямій.

Якщо взяти суму (w^2; 2*w; 1) і прирівняти до 0, D розрахується, як два в квадраті мінус добуток чисел (4; 1; 1). Цей вираз спроститься до 4-4 і звернеться в нуль. Виходить, що результати збігаються. Якщо уважно вдивитися у цю формулу, стане зрозуміло, що це «повний квадрат». Отже, рівність можна переписати у формі (w + 1) ^ 2 = 0. Стало очевидним, що результат у цьому завданні «-1». Якщо D дорівнює 0, ліву частину рівності завжди вдасться згорнути за формулою «квадрат суми».

Використання дискримінанта у обчисленні коренів

Ця допоміжна конструкція не лише показує кількість речових рішень, а й допомагає їх знаходити. Загальна формула розрахунку рівняння другого ступеня така:

w = (-j + / - d) / (2 * i), де d - дискримінант у ступені 1/2.

Припустимо, дискримінант нижче нульової позначки, тоді d - уявно і результати уявні.

D нульовий, тоді d, рівний D ступеня 1/2, теж нульовий. Рішення: -j/(2*i). Знову розглядаємо 1*w^2+2*w+1=0, знаходимо результати еквівалентні -2/(2*1)=-1.

Припустимо, D > 0, отже, d - речове число, і відповідь тут розпадається на дві частини: w1 = (-j + d) / (2 * i) і w2 = (-j - d) / (2 * i) . Обидва результати виявляться дійсними. Погляньмо на 2 * w^2 - 3 * w + 1 = 0. Тут дискримінант і d - одиниці. Виходить, w1 дорівнює (3 + 1) ділити (2 * 2) або 1, а w2 дорівнює (3 - 1) ділити на 2 * 2 або 1/2.

Результат прирівнювання квадратного виразу до нуля обчислюється згідно з алгоритмом:

  1. Визначення кількості дійсних рішень.
  2. Обчислення d = D^(1/2).
  3. Знаходження результату відповідно до формули (-j+/-d)/(2*i).
  4. Підстановка отриманого результату вихідну рівність для перевірки.

Деякі окремі випадки

Залежно від коефіцієнтів рішення може спрощуватися. Очевидно, що якщо коефіцієнт перед змінною в другому ступені дорівнює нулю, то виходить лінійна рівність. Коли коефіцієнт перед змінною в першому ступені нульовий, то можливі два варіанти:

  1. многочлен розкладається у різницю квадратів при негативному вільному члені;
  2. за позитивної константи дійсних рішень знайти не можна.

Якщо вільний член нульовий, то коріння буде (0; -j)

Але є й інші окремі випадки, що спрощують знаходження рішення.

Наведене рівняння другого ступеня

Наведеним називаютьтакий квадратний тричлен, де коефіцієнт перед старшим членом одиниця. Для цієї ситуації застосовна теорема Вієта, яка свідчить, що сума коренів дорівнює коефіцієнту при змінній у першому ступені, помноженому на -1, а твір відповідає константі «k».

Отже, w1 + w2 дорівнює -j і w1 * w2 дорівнює k, якщо перший коефіцієнт - одиниця. Щоб переконатися в правильності такого уявлення, можна виразити з першої формули w2 = -j - w1 і підставити його на другу рівність w1 * (-j - w1) = k. У результаті виходить вихідна рівність w1 ^ 2 + j * w1 + k = 0.

Важливо відмітити, Що i * w ^ 2 + j * w + k = 0 вдасться привести шляхом розподілу на "i". Результат буде: w^2+j1*w+k1=0, де j1 дорівнює j/i та k1 дорівнює k/i.

Погляньмо на вже вирішене 2 * w^2 - 3 * w + 1 = 0 з результатами w1 = 1 і w2 = 1/2. Треба поділити його навпіл, в результаті w^2 - 3/2 * w + 1/2 = 0. Перевіримо, що для знайдених результатів справедливі умови теореми: 1 + 1/2 = 3/2 і 1*1/2 = 1 /2.

Парний другий множник

Якщо множник при змінній першому ступені (j) ділиться на 2, то вдасться спростити формулу та шукати рішення через чверть дискримінанта D/4 = (j/2) ^ 2 - i*k. виходить w = (-j +/- d/2) / i, де d/2 = D/4 ступенем 1/2.

Якщо i = 1, а коефіцієнт j - парний, то рішенням буде добуток -1 і половини коефіцієнта при змінній w, плюс/мінус корінь із квадрата цієї половини за вирахуванням константи «k». Формула: w = -j / 2 + / - (j ^ 2 / 4 - k) ^ 1/2.

Вищий порядок дискримінанта

Розглянутий вище дискримінант тричлену другого ступеня - це найчастіший випадок. У загальному випадку дискримінант багаточлена є перемножені квадрати різниць коріння цього багаточлена. Отже дискримінант рівний нулю говорить про наявність як мінімум двох кратних рішень.

Розглянемо i*w^3+j*w^2+k*w+m=0.

D = j ^ 2 * k ^ 2 - 4 * i * k ^ 3 - 4 * i ^ 3 * k - 27 * i ^ 2 * m ^ 2 + 18 * i * j * k * m.

Припустимо, дискримінант перевершує нуль. Це означає, що є три корені в ділянці дійсних чисел. За нульового є кратні рішення. Якщо D< 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень — вещественный.

Відео

Наше відео докладно розповість про обчислення дискримінанта.

Чи не отримали відповідь на своє запитання? Запропонуйте авторам тему.

Найпростішим способом. Для цього винесіть z за дужки. Ви отримаєте : z(аz + b) = 0. Множники можна розписати: z = 0 і аz + b = 0, тому що обидва можуть давати в результаті нуль. У записі аz + b = 0 перенесемо другий праворуч з іншим знаком. Звідси одержуємо z1 = 0 і z2 = -b/а. Це і є коріння вихідного.

Якщо є неповне рівняння виду аz² + з = 0, у разі перебувають простим перенесенням вільного члена праву частину рівняння. Також поміняйте у своїй його знак. Вийде запис аz² = -с. Виразіть z² = -с/а. Візьміть корінь і запишіть два рішення – позитивне та негативне значення кореня квадратного.

Зверніть увагу

За наявності в рівнянні дробових коефіцієнтів помножте все рівняння на відповідний множник так, щоб позбавитися дробів.

Знання про те, як розв'язувати квадратні рівняння, потрібне і школярам, ​​і студентам, іноді це може допомогти і дорослій людині у звичайному житті. Є кілька певних методів рішень.

Розв'язання квадратних рівнянь

Квадратне рівняння виду a*x^2+b*x+c=0. Коефіцієнт х є шуканою змінною, a, b, c - числові коефіцієнти. Пам'ятайте, що знак "+" може змінюватися на знак "-".

Для того, щоб вирішити дане рівняння, необхідно скористатися теоремою Вієта або знайти дискримінант. Найпоширенішим способом є знаходження дискримінанта, тому що при деяких значеннях a, b, c скористатися теоремою Вієта неможливо.

Щоб знайти дискримінант (D) необхідно записати формулу D=b^2 - 4*a*c. Значення D може бути більшим, меншим або дорівнює нулю. Якщо D більше або менше нуля, то кореня буде два, якщо D = 0, то залишається лише один корінь, більш точно можна сказати, що D у цьому випадку має два рівнозначні корені. Підставте відомі коефіцієнти a, b, c формулу і обчисліть значення.

Після того, як ви знайшли дискримінант, для знаходження х скористайтеся формулами: x(1) = (- b+sqrt(D))/2*a; x(2) = (- b-sqrt(D))/2*a, де sqrt - це функція, що означає вилучення квадратного кореня з цього числа. Порахувавши ці вирази, ви знайдете два корені вашого рівняння, після чого рівняння вважається вирішеним.

Якщо D менше нуля, він все одно має коріння. У школі цей розділ практично не вивчається. Студенти вузів повинні знати, що з'являється негативне число під коренем. Від нього позбавляються виділяючи уявну частину, тобто -1 під коренем завжди дорівнює уявному елементу «i», який множиться на корінь з таким самим позитивним числом. Наприклад, якщо D=sqrt(-20), після перетворення виходить D=sqrt(20)*i. Після цього перетворення рішення рівняння зводиться до такого ж знаходження коренів, як було описано вище.

Теорема Вієта полягає у підборі значень x(1) та x(2). Використовується два тотожні рівняння: x(1) + x(2)=-b; x(1)*x(2)=с. Причому дуже важливим моментом є знак перед коефіцієнтом b, пам'ятайте, що цей знак протилежний тому, що стоїть у рівнянні. З першого погляду здається, що порахувати x(1) і x(2) дуже просто, але при вирішенні ви зіткнетеся з тим, що числа доведеться саме підбирати.

Елементи розв'язання квадратних рівнянь

За правилами математики деякі можна розкласти на множники: (a+x(1))*(b-x(2))=0, якщо за допомогою формул математики вдалося перетворити подібним чином це квадратне рівняння, то сміливо записуйте відповідь. x(1) і x(2) дорівнюватимуть поряд стоять коефіцієнтам у дужках, але з протилежним знаком.

Також не варто забувати про неповні квадратні рівняння. У вас може бути якийсь із доданків, якщо це так, то всі його коефіцієнти просто дорівнюють нулю. Якщо перед x^2 або x нічого не варте, то коефіцієнти а і b дорівнюють 1.

У суспільстві вміння робити дії з рівняннями, що містять змінну, зведену в квадрат, може стати у нагоді у багатьох галузях діяльності і широко застосовується практично у наукових і технічних розробках. Свідченням цього може бути конструювання морських і річкових суден, літаків і ракет. За допомогою подібних розрахунків визначають траєкторії переміщення різних тіл, у тому числі і космічних об'єктів. Приклади з розв'язанням квадратних рівнянь знаходять застосування не тільки в економічному прогнозуванні, при проектуванні та будівництві будівель, а й у звичайних життєвих обставинах. Вони можуть знадобитися в туристичних походах, на спортивних змаганнях, в магазинах при здійсненні покупок та інших досить поширених ситуаціях.

Розіб'ємо вираз на складові множники

Ступінь рівняння визначається максимальним значенням ступеня у змінної, яку містить цей вираз. Якщо вона дорівнює 2, то подібне рівняння якраз і називається квадратним.

Якщо говорити мовою формул, то зазначені вирази, хоч би як вони виглядали, завжди можна привести до вигляду, коли ліва частина виразу складається з трьох доданків. Серед них: ax 2 (тобто змінна, зведена квадрат зі своїм коефіцієнтом), bx (невідоме без квадрата зі своїм коефіцієнтом) і c (вільна складова, тобто звичайне число). Все це в правій частині дорівнює 0. У випадку, коли у такого багаточлена відсутня одна з його складових доданків, за винятком ax 2 воно називається неповним квадратним рівнянням. Приклади з вирішенням таких завдань, значення змінних у яких знайти нескладно, слід розглянути насамперед.

Якщо вираз на вигляд виглядає таким чином, що доданків у виразу в правій частині два, точніше ax 2 і bx, найлегше відшукати їх винесенням змінної за дужки. Тепер наше рівняння виглядатиме так: x(ax+b). Далі стає очевидним, що або х=0, або завдання зводиться до знаходження змінної з наступного виразу: ax+b=0. Зазначене продиктовано однією з властивостей множення. Правило говорить, що добуток двох множників дає в результаті 0 тільки якщо один з них дорівнює нулю.

приклад

x = 0 або 8х - 3 = 0

В результаті одержуємо два корені рівняння: 0 та 0,375.

Рівняння такого роду можуть описувати переміщення тіл під дією сили тяжкості, які почали рух з певної точки, прийнятої початку координат. Тут математичний запис набуває такої форми: y = v 0 t + gt 2 /2. Підставивши необхідні значення, прирівнявши праву частину 0 і знайшовши можливі невідомі, можна дізнатися про час, що проходить з моменту підйому тіла до моменту його падіння, а також багато інших величин. Але про це ми поговоримо пізніше.

Розкладання виразу на множники

Описане вище правило дає можливість вирішувати зазначені завдання й у складніших випадках. Розглянемо приклади із розв'язанням квадратних рівнянь такого типу.

X 2 - 33x + 200 = 0

Цей квадратний тричлен є повним. Спочатку перетворимо вираз і розкладемо його на множники. Їх виходить два: (x-8) і (x-25) = 0. У результаті маємо два корені 8 та 25.

Приклади з розв'язанням квадратних рівнянь у 9 класі дозволяють цим методом знаходити змінну у виразах не тільки другого, а й третього та четвертого порядків.

Наприклад: 2x 3 + 2x 2 - 18x - 18 = 0. При розкладанні правої частини на множники зі змінною їх виходить три, тобто (x+1),(x-3) і (x+3).

В результаті стає очевидним, що дане рівняння має три корені: -3; -1; 3.

Вилучення квадратного кореня

Іншим випадком неповного рівняння другого порядку є вираз, мовою букв представлене таким чином, що права частина будується зі складових ax 2 і c. Тут для отримання значення змінної вільний член переноситься у праву сторону, а потім з обох частин рівності витягується квадратний корінь. Слід звернути увагу, що й у разі коренів рівняння зазвичай буває два. Винятком можуть бути лише рівності, взагалі які містять доданок з, де змінна дорівнює нулю, і навіть варіанти висловів, коли права частина виявляється негативною. У разі рішень взагалі немає, оскільки зазначені вище дії неможливо проводити з корінням. Приклади розв'язків квадратних рівнянь такого типу слід розглянути.

У разі корінням рівняння виявляться числа -4 і 4.

Обчислення пощади земельної ділянки

Потреба в подібних обчисленнях з'явилася в давнину, адже розвиток математики багато в чому в ті далекі часи було обумовлено необхідністю визначати з найбільшою точністю площі і периметри земельних ділянок.

Приклади з розв'язанням квадратних рівнянь, складених на основі таких завдань, слід розглянути і нам.

Отже, допустимо є прямокутна ділянка землі, довжина якої на 16 метрів більша, ніж ширина. Слід знайти довжину, ширину та периметр ділянки, якщо відомо, що його площа дорівнює 612 м 2 .

Приступаючи до справи, спершу складемо необхідне рівняння. Позначимо за x ширину ділянки, тоді його довжина виявиться (х +16). З написаного випливає, що площа визначається виразом х(х+16), що згідно з умовою нашого завдання становить 612. Це означає, що х(х+16) = 612.

Вирішення повних квадратних рівнянь, а даний вираз є саме таким, не може виконуватися колишнім способом. Чому? Хоча ліва частина його, як і раніше, містить два множники, добуток їх зовсім не дорівнює 0, тому тут застосовуються інші методи.

Дискримінант

Насамперед зробимо необхідні перетворення, тоді зовнішній вигляд даного виразу виглядатиме таким чином: x 2 + 16x - 612 = 0. Це означає, що ми отримали вираз у формі, що відповідає зазначеному раніше стандарту, де a=1, b=16, c= -612.

Це може стати прикладом розв'язання квадратних рівнянь через дискримінант. Тут необхідні розрахунки виконуються за схемою: D = b 2 - 4ac. Ця допоміжна величина непросто дає можливість знайти шукані величини рівнянні другого порядку, вона визначає кількість можливих варіантів. Якщо D>0, їх два; при D = 0 існує один корінь. У випадку, якщо D<0, никаких шансов для решения у уравнения вообще не имеется.

Про коріння та його формулу

У разі дискримінант дорівнює: 256 - 4(-612) = 2704. Це свідчить, що у нашого завдання існує. Якщо знати, до , Розв'язання квадратних рівнянь потрібно продовжувати із застосуванням нижче наведеної формули. Вона дозволяє обчислити коріння.

Це означає, що у цьому випадку: x 1 =18, x 2 =-34. Другий варіант у цій дилемі не може бути рішенням, тому що розміри земельної ділянки не можуть вимірюватися в негативних величинах, отже х (тобто ширина ділянки) дорівнює 18 м. Звідси обчислюємо довжину: 18+16=34 і периметр 2(34+ 18) = 104 (м 2).

Приклади та завдання

Продовжуємо вивчення квадратних рівнянь. Приклади та детальне рішення кількох з них будуть наведені далі.

1) 15x2+20x+5=12x2+27x+1

Перенесемо все в ліву частину рівності, зробимо перетворення, тобто отримаємо вид рівняння, який прийнято називати стандартним, і прирівняємо його нулю.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Склавши подібні, визначимо дискримінант: D = 49 - 48 = 1. Значить у нашого рівняння буде два корені. Обчислимо їх згідно з наведеною вище формулою, а це означає, що перший з них дорівнюватиме 4/3, а другий 1.

2) Тепер розкриємо загадки іншого.

З'ясуємо, чи взагалі є тут коріння x 2 - 4x + 5 = 1? Для отримання вичерпної відповіді наведемо багаточлен до відповідного звичного вигляду та обчислимо дискримінант. У вказаному прикладі рішення квадратного рівняння виконувати не обов'язково, адже суть завдання полягає зовсім не в цьому. У разі D = 16 - 20 = -4, отже, коріння дійсно немає.

Теорема Вієта

Квадратні рівняння зручно вирішувати через зазначені вище формули і дискримінант, коли значення останнього витягується квадратний корінь. Але це не завжди. Проте способів отримання значень змінних у разі існує безліч. Приклад: розв'язання квадратних рівнянь з теореми Вієта. Вона названа на честь який жив у XVI столітті у Франції та зробив блискучу кар'єру завдяки своєму математичному таланту та зв'язкам при дворі. Портрет його можна побачити у статті.

Закономірність, яку помітив уславлений француз, полягала в наступному. Він довів, що коріння рівняння у сумі чисельно дорівнює -p=b/a, які твір відповідає q=c/a.

Тепер розглянемо конкретні завдання.

3x 2 + 21x - 54 = 0

Для простоти перетворюємо вираз:

x 2 + 7x - 18 = 0

Скористаємося теоремою Вієта, це дасть нам таке: сума коренів дорівнює -7, а їх твір -18. Звідси отримаємо, що корінням рівняння є числа -9 і 2. Зробивши перевірку, переконаємося, що ці значення змінних справді підходять у вираз.

Графік та рівняння параболи

Поняття квадратичні функції і квадратні рівняння тісно пов'язані. Приклади подібного вже наведено раніше. Тепер розглянемо деякі математичні загадки трохи докладніше. Будь-яке рівняння описуваного типу можна наочно. Така залежність, намальована як графіка, називається параболою. Різні її види представлені малюнку нижче.

Будь-яка парабола має вершину, тобто точку, з якої виходять її гілки. Якщо a>0, вони йдуть високо в нескінченність, а коли a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Наочні зображення функцій допомагають вирішувати будь-які рівняння, зокрема квадратні. Цей метод називається графічним. А значенням змінної х є координата абсцис у точках, де відбувається перетин лінії графіка з 0x. Координати вершини можна дізнатися за щойно наведеною формулою x 0 = -b/2a. І, підставивши отримане значення початкове рівняння функції, можна дізнатися y 0 , тобто другу координату вершини параболи, що належить осі ординат.

Перетин гілок параболи з віссю абсцис

Прикладів із розв'язанням квадратних рівнянь дуже багато, але існують і загальні закономірності. Розглянемо їх. Зрозуміло, що перетин графіка з віссю 0x при a>0 можливе тільки якщо у 0 приймає негативні значення. А для a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Інакше D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

За графіком параболи можна визначити коріння. Правильне також протилежне. Тобто, якщо отримати наочне зображення квадратичної функції нелегко, можна прирівняти праву частину виразу до 0 і вирішити отримане рівняння. А знаючи точки перетину із віссю 0x, легше побудувати графік.

З історії

За допомогою рівнянь, що містять змінну, зведену в квадрат, за старих часів не тільки робили математичні розрахунки і визначали площі геометричних фігур. Подібні обчислення давнім були необхідні для грандіозних відкриттів у галузі фізики та астрономії, а також для складання астрологічних прогнозів.

Як припускають сучасні діячі науки, одними з перших розв'язання квадратних рівнянь зайнялися жителі Вавилону. Сталося це за чотири сторіччя до настання нашої ери. Зрозуміло, їх обчислення докорінно відрізнялися від нині прийнятих і виявлялися набагато примітивнішими. Наприклад, месопотамские математики гадки не мали про існування негативних чисел. Незнайомі їм були інші тонкощі з тих, які знає будь-який школяр сучасності.

Можливо, ще раніше вчених Вавилона розв'язанням квадратних рівнянь зайнявся мудрець із Індії Баудхаяма. Сталося це приблизно за вісім століть до настання ери Христа. Щоправда, рівняння другого порядку, способи вирішення яких він навів, були найпростішими. Крім нього, подібними питаннями цікавилися за старих часів і китайські математики. У Європі квадратні рівняння почали вирішувати лише на початку XIII століття, проте пізніше їх використовували у своїх роботах такі великі вчені, як Ньютон, Декарт і багато інших.

Серед усього курсу шкільної програми алгебри однією з найбільших тем є тема про квадратні рівняння. При цьому під квадратним рівнянням розуміється рівняння виду ax 2 + bx + c = 0 де a ≠ 0 (читається: а помножити на ікс у квадраті плюс бе ікс плюс це дорівнює нулю, де а нерівно нулю). При цьому основне місце займають формули знаходження дискримінанта квадратного рівняння зазначеного виду, під яким розуміється вираз, що дозволяє визначити наявність або відсутність коренів квадратного рівняння, а також їх кількість (за наявності).

Формула (рівняння) дискримінанта квадратного рівняння

Загальноприйнята формула дискримінанта квадратного рівняння має такий вигляд: D = b 2 – 4ac. Обчислюючи дискримінант за зазначеною формулою, можна визначити наявність і кількість коренів у квадратного рівняння, а й вибрати спосіб знаходження цих коренів, яких існує кілька залежно від типу квадратного рівняння.

Що означає якщо дискримінант дорівнює нулю \ Формула коренів квадратного рівняння якщо дискримінант дорівнює нулю

Дискримінант, як випливає з формули, позначається латинською літерою D. У разі коли дискримінант дорівнює нулю, слід зробити висновок, що квадратне рівняння виду ax 2 + bx + c = 0, де a ≠ 0, має тільки один корінь, який обчислюється по спрощеною формулою. Дана формула застосовується тільки за нульового дискримінанта і виглядає наступним чином: x = –b/2a, де х – корінь квадратного рівняння, b та а – відповідні змінні квадратного рівняння. Для знаходження кореня квадратного рівняння необхідно негативне значення змінної b розділити подвоєне значення змінної а. Отриманий вираз буде розв'язанням квадратного рівняння.

Розв'язання квадратного рівняння через дискримінант

Якщо при обчисленні дискримінанта за вищенаведеною формулою виходить позитивне значення (D більше за нуль), то квадратне рівняння має два корені, які обчислюються за такими формулами: x 1 = (–b + vD)/2a, x 2 = (–b – vD) /2a. Найчастіше, дискримінант окремо не обчислюється, а значення D, з якого витягується корінь, просто підставляється підкорене вираз у вигляді формули дискримінанта. Якщо змінна b має парне значення, то для обчислення коренів квадратного рівняння виду ax 2 + bx + c = 0 де a ≠ 0 можна також використовувати наступні формули: x 1 = (–k + v(k2 – ac))/a , x 2 = (-k + v (k2 - ac)) / a, де k = b/2.

У деяких випадках для практичного розв'язання квадратних рівнянь можна використовувати Теорему Вієта, яка свідчить, що для суми коренів квадратного рівняння виду x 2 + px + q = 0 буде справедливе значення x 1 + x 2 = –p, а добутку коренів зазначеного рівняння – вираз x 1 x x 2 = q.

Чи може дискримінант бути меншим за нуль

При обчисленні значення дискримінанта можна зіткнутися з ситуацією, яка не підпадає під жодний з описаних випадків – коли дискримінант має негативне значення (тобто менше нуля). У цьому випадку прийнято вважати, що квадратне рівняння виду ax 2 + bx + c = 0, де a ≠ 0, дійсних коренів не має, отже, його рішення обмежуватиметься обчисленням дискримінанта, а наведені вище формули коренів квадратного рівняння в даному випадку застосовуватися не будуть. При цьому у відповіді до квадратного рівняння записується, що рівняння дійсних коренів не має.

Пояснювальне відео:

Копіївська сільська середня загальноосвітня школа

10 способів розв'язання квадратних рівнянь

Керівник: Патрікеєва Галина Анатоліївна,

учитель математики

с.Коп'єво, 2007

1. Історія розвитку квадратних рівнянь

1.1 Квадратні рівняння у Стародавньому Вавилоні

1.2 Як становив та вирішував Діофант квадратні рівняння

1.3 Квадратні рівняння в Індії

1.4 Квадратні рівняння у ал- Хорезмі

1.5 Квадратні рівняння у Європі XIII - XVII ст.

1.6 Про теорему Вієта

2. Способи розв'язання квадратних рівнянь

Висновок

Література

1. Історія розвитку квадратних рівнянь

1.1 Квадратні рівняння у Стародавньому Вавилоні

Необхідність вирішувати рівняння як першої, а й другого ступеня ще давнини була викликана потребою вирішувати завдання, пов'язані зі знаходженням площ земельних ділянок і із земляними роботами військового характеру, і навіть з недостатнім розвитком астрономії і самої математики. Квадратні рівняння вміли розв'язувати близько 2000 років до зв. е. вавилоняни.

Застосовуючи сучасний запис алгебри, можна сказати, що в їх клинописних текстах зустрічаються, крім неповних, і такі, наприклад, повні квадратні рівняння:

X 2 + X = ¾; X 2 - X = 14,5

Правило розв'язання цих рівнянь, викладене у вавилонських текстах, збігається по суті із сучасним, проте невідомо, яким чином дійшли вавилоняни до цього правила. Майже всі знайдені до цих пір клинописні тексти наводять лише завдання з рішеннями, викладеними у вигляді рецептів, без вказівок щодо того, як вони були знайдені.

Незважаючи на високий рівень розвитку алгебри у Вавилоні, у клинописних текстах відсутні поняття негативного числа та загальні методи розв'язання квадратних рівнянь.

1.2 Як становив та вирішував Діофант квадратні рівняння.

В «Арифметиці» Діофанта немає систематичного викладу алгебри, однак у ній міститься систематизований ряд завдань, що супроводжуються поясненнями та вирішуються за допомогою складання рівнянь різних ступенів.

При складанні рівнянь Діофант спрощення рішення вміло вибирає невідомі.

Ось, наприклад, одне з його завдань.

Завдання 11.«Знайти два числа, знаючи, що їх сума дорівнює 20, а твір – 96»

Діофант розмірковує так: з умови завдання випливає, що шукані числа не рівні, оскільки якби вони були рівні, то їх добуток дорівнював би не 96, а 100. Таким чином, одне з них буде більше половини їх суми, тобто . 10 + х, Інше менше, тобто. 10 - х. Різниця між ними .

Звідси рівняння:

(10 + х) (10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Звідси х = 2. Одне з шуканих чисел одно 12 , інше 8 . Рішення х = -2для Діофанта немає, оскільки грецька математика знала лише позитивні числа.

Якщо ми вирішимо це завдання, вибираючи як невідоме одне з шуканих чисел, то ми прийдемо до вирішення рівняння

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)


Зрозуміло, що, вибираючи як невідомий напіврізність шуканих чисел, Діофант спрощує рішення; йому вдається звести завдання розв'язання неповного квадратного рівняння (1).

1.3 Квадратні рівняння в Індії

Завдання на квадратні рівняння зустрічаються вже в астрономічному тракті «Аріабхаттіам», складеному 499 р. індійським математиком та астрономом Аріабхаттою. Інший індійський вчений, Брахмагупта (VII ст.), виклав загальне правило розв'язання квадратних рівнянь, наведених до єдиної канонічної форми:

ах 2+ b х = с, а > 0. (1)

У рівнянні (1) коефіцієнти, крім аможуть бути і негативними. Правило Брахмагупт по суті збігається з нашим.

У Стародавній Індії були поширені громадські змагання у вирішенні важких завдань. В одній із старовинних індійських книг говориться з приводу таких змагань наступне: «Як сонце блиском своїм затьмарює зірки, так вчена людина затьмарить славу іншого в народних зборах, пропонуючи і вирішуючи завдання алгебри». Завдання часто вдягалися у віршовану форму.

Ось одне із завдань знаменитого індійського математика XII ст. Бхаскар.

Завдання 13.

«Мавп швидких зграя А дванадцять по ліанах ...

Влада поївши, розважалася. Стали стрибати, повисаючи.

Їх у квадраті частина восьма Скільки ж було мавпочок,

На галявині бавилася. Ти скажи мені, у цій зграї?

Рішення Бхаскари свідчить про те, що він знав про двозначність коренів квадратних рівнянь (рис. 3).

Відповідне завдання 13 рівняння:

( x /8) 2 + 12 = x

Бхаскар пише під виглядом:

х 2 - 64х = -768

і, щоб доповнити ліву частину цього рівняння до квадрата, додає до обох частин 32 2 , отримуючи потім:

х 2 - 64х + 32 2 = -768 + 1024

(х - 32) 2 = 256,

х - 32 = ± 16,

х 1 = 16, х 2 = 48.

1.4 Квадратні рівняння у ал – Хорезмі

В алгебраїчному трактаті ал - Хорезмі дається класифікація лінійних та квадратних рівнянь. Автор налічує 6 видів рівнянь, висловлюючи їх так:

1) «Квадрати рівні корінням», тобто. ах 2 + с = b х.

2) «Квадрати дорівнюють числу», тобто. ах 2 = с.

3) «Коріння рівні числу», тобто. ах = с.

4) «Квадрати та числа рівні коріння», тобто. ах 2 + с = b х.

5) «Квадрати і коріння дорівнюють числу», тобто. ах 2+ bx = с.

6) «Коріння і числа дорівнюють квадратам», тобто. bx + с = ах 2 .

Для ал - Хорезмі, що уникав вживання негативних чисел, члени кожного з цих рівнянь доданки, а чи не віднімаються. При цьому свідомо не беруться до уваги рівняння, які не мають позитивних рішень. Автор викладає способи вирішення зазначених рівнянь, користуючись прийомами ал - джабр та ал - мукабала. Його рішення, звісно, ​​не збігається повністю із нашим. Вже не кажучи про те, що воно чисто риторичне, слід зазначити, наприклад, що при розв'язанні неповного квадратного рівняння першого виду

ал - Хорезмі, як і всі математики до XVII ст., не враховує нульового рішення, ймовірно, тому, що в конкретних практичних завданнях воно не має значення. При розв'язанні повних квадратних рівнянь ал - Хорезмі на окремих числових прикладах викладає правила розв'язання, а потім і геометричні докази.

Завдання 14.«Квадрат і число 21 дорівнюють 10 корінням. Знайти корінь» (мається на увазі корінь рівняння х 2 + 21 = 10х).

Рішення автора говорить приблизно так: розділи навпіл число коренів, отримаєш 5, помножиш 5 саме на себе, від твору забери 21, залишиться 4. Витягни корінь з 4, отримаєш 2. Забери 2 від 5, отримаєш 3, це і буде шуканий корінь. Або додай 2 до 5, що дасть 7, це теж є корінь.

Трактат ал - Хорезмі є першою книгою, що дійшла до нас, в якій систематично викладено класифікацію квадратних рівнянь і дано формули їх вирішення.

1.5 Квадратні рівняння у Європі XIII - XVII вв

Формули розв'язання квадратних рівнянь за зразком ал - Хорезмі в Європі були вперше викладені в «Книзі абака», написаної в 1202 р. італійським математиком Леонардо Фібоначчі. Ця об'ємна праця, в якій відображено вплив математики як країн ісламу, так і Стародавньої Греції, відрізняється і повнотою, і ясністю викладу. Автор розробив самостійно деякі нові приклади алгебри вирішення завдань і перший в Європі підійшов до введення негативних чисел. Його книга сприяла поширенню знань алгебри не тільки в Італії, але і в Німеччині, Франції та інших країнах Європи. Багато завдань із «Книги абака» переходили майже у всі європейські підручники XVI – XVII ст. та частково XVIII.

Загальне правило розв'язання квадратних рівнянь, наведених до єдиного канонічного виду:

х 2 + bx = с,

при всіляких комбінаціях знаків коефіцієнтів b , збуло сформульовано у Європі лише 1544 р. М. Штифелем.

Висновок формули розв'язання квадратного рівняння у загальному вигляді є у Вієта, проте Вієт визнавав лише позитивне коріння. Італійські математики Тарталья, Кардано, Бомбеллі серед перших у XVI ст. Враховують, крім позитивних, і негативне коріння. Лише XVII в. Завдяки праці Жірара, Декарта, Ньютона та інших вчених спосіб розв'язання квадратних рівнянь набуває сучасного вигляду.

1.6 Про теорему Вієта

Теорема, що виражає зв'язок між коефіцієнтами квадратного рівняння та його корінням, що носить ім'я Вієта, була ним сформульована вперше в 1591 наступним чином: «Якщо B + D, помножене на A - A 2 , одно BD, то Aодно Уі одно D ».

Щоб зрозуміти Вієта, слід згадати, що А, як і будь-яка голосна буква, означало в нього невідоме (наше х), голосні ж В, D- Коефіцієнти при невідомому. На мові сучасної алгебри вищенаведене формулювання Вієта означає: якщо має місце

(а + b ) х - х 2 = ab ,

х 2 - (а + b )х + а b = 0,

х 1 = а, х 2 = b .

Виражаючи залежність між корінням та коефіцієнтами рівнянь загальними формулами, записаними за допомогою символів, Вієт встановив однаковість у прийомах розв'язання рівнянь. Проте символіка Вієта ще далека від сучасного вигляду. Він не визнавав негативних чисел і тому при вирішенні рівнянь розглядав лише випадки, коли все коріння позитивне.

2. Способи розв'язання квадратних рівнянь

Квадратні рівняння - це фундамент, на якому лежить велична будівля алгебри. Квадратні рівняння знаходять широке застосування при розв'язанні тригонометричних, показових, логарифмічних, ірраціональних та трансцендентних рівнянь та нерівностей. Усі ми вміємо розв'язувати квадратні рівняння зі шкільної лави (8 клас), до закінчення вишу.