Біографії Характеристики Аналіз

Графік функції y x2 4x 1. Перетворення графіків із модулем

1. Дробно-лінійна функція та її графік

Функція виду y = P(x) / Q(x), де P(x) та Q(x) – багаточлени, називається дробово-раціональною функцією.

З поняттям раціональних чиселви вже напевно знайомі. Аналогічно раціональні функції – це функції, які можна як приватне двох многочленов.

Якщо дробово-раціональна функція є приватною дво лінійних функцій– багаточленів першого ступеня, тобто. функцію виду

y = (ax + b) / (cx + d), то її називають дробово-лінійною.

Зауважимо, що функції y = (ax + b) / (cx + d), c ≠ 0 (інакше функція стає лінійною y = ax/d + b/d) і що a/c ≠ b/d (інакше функція константа ). Дробно-лінійна функція визначена за всіх дійсних числах, крім x = -d/c. Графіки дробово-лінійних функцій формою не відрізняються від відомого вам графіка y = 1/x. Крива, що є графіком функції y = 1/x, називається гіперболою. При необмеженому збільшенні x за абсолютною величиною функція y = 1/x необмежено зменшується за абсолютною величиною і обидві гілки графіка наближаються до осі абсцис: права наближається зверху, а ліва – знизу. Прямі, до яких наближаються гілки гіперболи, називають її асимптотами.

приклад 1.

y = (2x + 1) / (x - 3).

Рішення.

Виділимо цілу частину: (2x + 1) / (x - 3) = 2 + 7 / (x - 3).

Тепер легко бачити, що графік цієї функції виходить з графіка функції y = 1/x наступними перетвореннями: зсувом на 3 одиничні відрізки вправо, розтягуванням вздовж осі Oy в 7 разів і зсувом на 2 одиничних відрізки вгору.

Будь-який дріб y = (ax + b) / (cx + d) можна записати аналогічним чином, виділивши цілу частину. Отже, графіки всіх дробово-лінійних функцій є гіперболи, по-різному зсунуті вздовж координатних осейта розтягнуті по осі Oy.

Для побудови графіка будь-якої довільної дробово-лінійної функції не обов'язково дріб, що задає цю функцію, перетворювати. Оскільки ми знаємо, що графік є гіпербола, достатньо знайти прямі, до яких наближаються її гілки – асимптоти гіперболи x = -d/c і y = a/c.

приклад 2.

Знайти асимптоти графіка функції y = (3x + 5) / (2x + 2).

Рішення.

Функція не визначена при x = -1. Значить, пряма x = -1 є вертикальною асимптотою. Для знаходження горизонтальної асимптоти, з'ясуємо, чого наближаються значення функції y(x), коли аргумент x зростає по абсолютній величині.

Для цього розділимо чисельник та знаменник дробу на x:

y = (3+5/x)/(2+2/x).

При x → ∞ дріб прагнутиме 3/2. Значить, горизонтальна асимптота- Це пряма y = 3/2.

приклад 3.

Побудувати графік функції y = (2x + 1) / (x + 1).

Рішення.

Виділимо у дробу «цілу частину»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 - 1/(x + 1).

Тепер легко бачити, що графік цієї функції виходить з графіка функції y = 1/x наступними перетвореннями: зсувом на 1 одиницю вліво, симетричним відображенням щодо Ox і зрушенням на 2 одиничних відрізки вгору осі Oy.

Область визначення D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значень E(y) = (-∞; 2) ᴗ(2; +∞).

Точки перетину з осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функція зростає кожному з проміжків області визначення.

Відповідь: рисунок 1.

2. Дробно-раціональна функція

Розглянемо дробово-раціональну функцію виду y = P(x) / Q(x), де P(x) і Q(x) – багаточлени, ступеня вище за першу.

Приклади таких раціональних функцій:

y = (x 3 - 5x + 6) / (x 7 - 6) або y = (x - 2) 2 (x + 1) / (x 2 + 3).

Якщо функція y = P(x) / Q(x) являє собою приватне двох багаточленів ступеня вище за першу, то її графік буде, як правило, складніше, і побудувати його точно, з усіма деталями буває іноді важко. Однак, часто достатньо застосувати прийоми, аналогічні тим, з якими ми вже познайомилися вище.

Нехай дріб – правильний (n< m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 + p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 + p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 + p t x + q t).

Очевидно, що графік дробово-раціональної функціїможна одержати як суму графіків елементарних дробів.

Побудова графіків дробово-раціональних функцій

Розглянемо кілька способів побудови графіків дрібно-раціональної функції.

приклад 4.

Побудувати графік функції y = 1/x2.

Рішення.

Використовуємо графік функції y = x 2 для побудови графіка y = 1/x 2 та скористаємося прийомом «поділу» графіків.

Область визначення D(y) = (-∞; 0)ᴗ(0; +∞).

Область значень E(y) = (0; +∞).

Точок перетину з осями немає. Функція парна. Зростає при всіх з інтервалу (-∞; 0), зменшується при x від 0 до +∞.

Відповідь: рисунок 2.

Приклад 5.

Побудувати графік функції y = (x 2 - 4x + 3) / (9 - 3x).

Рішення.

Область визначення D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/ 3+1/3.

Тут ми використовували прийом розкладання на множники, скорочення та приведення до лінійної функції.

Відповідь: рисунок 3.

Приклад 6.

Побудувати графік функції y = (x 2 - 1) / (x 2 + 1).

Рішення.

Область визначення D(y) = R. Оскільки функція парна, то графік симетричний щодо осі ординат. Перш ніж будувати графік, знову перетворимо вираз, виділивши цілу частину:

y = (x 2 - 1) / (x 2 + 1) = 1 - 2 / (x 2 + 1).

Зауважимо, що виділення цілої частини у формулі дробово-раціональної функції є одним із основних при побудові графіків.

Якщо x → ±∞ то y → 1, тобто. Пряма y = 1 є горизонтальною асимптотою.

Відповідь: рисунок 4.

Приклад 7.

Розглянемо функцію y = x/(x 2 + 1) і спробуємо точно визначити максимальне її значення, тобто. саму високу точкуправої половини графіка. Щоб точно збудувати цей графік, сьогоднішніх знань недостатньо. Вочевидь, що крива неспроможна «піднятися» дуже високо, т.к. знаменник досить швидко починає «обганяти» чисельник. Подивимося, чи може значення функції дорівнювати 1. Для цього потрібно вирішити рівняння x 2 + 1 = x, x 2 – x + 1 = 0. Це рівняння не має дійсних коренів. Отже, наше припущення не є вірним. Щоб знайти саме велике значенняфункції, треба дізнатися, за якого найбільшого А рівняння А = x/(x 2 + 1) матиме рішення. Замінимо вихідне рівняння квадратним: Аx 2 – x + А = 0. Це рівняння має рішення, коли 1 – 4А 2 ≥ 0. Звідси знаходимо найбільше значенняА = 1/2.

Відповідь: рисунок 5, max y(x) = ½.

Залишились питання? Чи не знаєте, як будувати графіки функцій?
Щоб отримати допомогу репетитора – зареєструйтесь.
Перший урок – безкоштовно!

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Виберемо на площині прямокутну системукоординат і відкладатимемо на осі абсцис значення аргументу х, але в осі ординат - значення функції у = f(х).

Графіком функції y = f(x)називається безліч всіх точок, у яких абсциси належать області визначення функції, а ординати дорівнюють відповідним значенням функції.

Іншими словами, графік функції y = f(х) - це безліч усіх точок площини, координати х, уяких задовольняють співвідношення y = f(x).



На рис. 45 та 46 наведено графіки функцій у = 2х + 1і у = х 2 - 2х.

Строго говорячи, слід розрізняти графік функції (точне математичне визначенняякого було дано вище) і накреслену криву, яка завжди дає лише більш менш точний ескіз графіка (та й те, як правило, не всього графіка, а лише його частини, розташованого в кінцевій частині площини). Надалі, однак, ми зазвичай говоритимемо «графік», а не «ескіз графіка».

За допомогою графіка можна знаходити значення функції у точці. Саме, якщо точка х = аналежить області визначення функції y = f(x), то для знаходження числа f(а)(тобто значення функції у точці х = а) слід вчинити так. Потрібно через крапку з абсцисою х = апровести пряму, паралельну осі ординат; ця пряма перетне графік функції y = f(x)в одній точці; ордината цієї точки і буде, з визначення графіка, дорівнює f(а)(Рис. 47).



Наприклад, для функції f(х) = х 2 - 2xза допомогою графіка (рис. 46) знаходимо f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 і т.д.

Графік функції наочно ілюструє поведінку та властивості функції. Наприклад, із розгляду рис. 46 ясно, що функція у = х 2 - 2хнабуває позитивних значень при х< 0 і при х > 2, Негативні - при 0< x < 2; найменше значенняфункція у = х 2 - 2хприймає за х = 1.

Для побудови графіка функції f(x)потрібно знайти всі точки площини, координати х,уяких задовольняють рівняння y = f(x). Найчастіше це зробити неможливо, оскільки таких точок нескінченно багато. Тому графік функції зображують приблизно з більшою або меншою точністю. Найпростішим є метод побудови графіка за кількома точками. Він у тому, що аргументу хнадають кінцеве числозначень - скажімо, х 1, х 2, x 3, ..., х k і становлять таблицю, до якої входять вибрані значення функції.

Таблиця виглядає так:



Склавши таку таблицю, ми можемо намітити кілька точок графіка функції y = f(x). Потім, з'єднуючи ці точки плавною лінією, ми отримуємо приблизний вид графіка функції y = f(x).

Слід зазначити, що метод побудови графіка за кількома точками дуже ненадійний. Насправді поведінка графіка між наміченими точками та поведінка його поза відрізком між крайніми зі взятих точок залишається невідомою.

Приклад 1. Для побудови графіка функції y = f(x)хтось склав таблицю значень аргументу та функції:




Відповідні п'ять точок показано на рис. 48.



На підставі розташування цих точок він зробив висновок, що графік функції є прямою (показану на рис. 48 пунктиром). Чи можна вважати цей висновок надійним? Якщо немає додаткових міркувань, які б підтверджували цей висновок, його навряд чи можна вважати надійним. надійним.

Для обґрунтування свого твердження розглянемо функцію

.

Обчислення показують, що значення цієї функції в точках -2, -1, 0, 1, 2 описуються наведеною вище таблицею. Однак графік цієї функції не є прямою лінією (він показаний на рис. 49). Іншим прикладом може бути функція y = x + l + sinπx;її значення теж описуються наведеною вище таблицею.

Ці приклади показують, що у «чистому» вигляді метод побудови графіка за кількома точками ненадійний. Тому для побудови графіка заданої функції, як правило, надходять у такий спосіб. Спочатку вивчають властивості цієї функції, з допомогою яких можна побудувати ескіз графіка. Потім, обчислюючи значення функції кількох точках (вибір яких залежить від встановлених властивостей функції), знаходять відповідні точки графіка. І, нарешті, через побудовані точки проводять криву, використовуючи властивості цієї функції.

Деякі (найпростіші і найчастіше використовувані) властивості функцій, застосовувані перебування ескізу графіка, ми розглянемо пізніше, тепер розберемо деякі часто застосовувані методи побудови графіків.


Графік функції у = | f (x) |.

Нерідко доводиться будувати графік функції y = | f (x)|, де f(х) -задана функція. Нагадаємо, як це робиться. За визначенням абсолютної величини числа можна написати

Це означає, що графік функції y = | f (x) |можна отримати з графіка, функції y = f(x)наступним чином: всі точки графіка функції у = f(х), у яких ординати невід'ємні, слід залишити без зміни; далі, замість точок графіка функції y = f(x), що мають негативні координати, слід побудувати відповідні точки графіка функції у = -f(x)(тобто частина графіка функції
y = f(x), що лежить нижче осі х,слід симетрично відобразити щодо осі х).



приклад 2.Побудувати графік функції у = | х |.

Беремо графік функції у = х(рис. 50, а) та частина цього графіка при х< 0 (що лежить під віссю х) симетрично відбиваємо щодо осі х. В результаті ми отримуємо графік функції у = | х |(Рис. 50, б).

Приклад 3. Побудувати графік функції y = | x 2 - 2x |.


Спочатку збудуємо графік функції y = x 2 – 2x.Графік цієї функції - парабола, гілки якої спрямовані вгору, вершина параболи має координати (1; -1), її графік перетинає вісь абсцис у точках 0 і 2. На проміжку (0; 2) фукція набуває негативних значень, тому саме цю частину графіка симетрично відобразимо щодо осі абсцис. На малюнку 51 побудовано графік функції у = | х 2 -2х |виходячи з графіка функції у = х 2 - 2x

Графік функції y = f(x) + g(x)

Розглянемо задачу побудови графіка функції y = f(x) + g(x).якщо задані графіки функцій y = f(x)і y = g(x).

Зауважимо, що область визначення функції y = |f(x) + g(х)| є безліч всіх тих значень х, для яких визначені обидві функції y = f(x) і у = g(х), тобто ця область визначення є перетином областей визначення, функцій f(x) і g(x).

Нехай крапки (х 0 , y 1) та (х 0, у 2) відповідно належать графікам функцій y = f(x)і y = g(х), Т. е. y 1 = f(x0), y2=g(х0).Тоді точка (x0;. y1 + y2) належить графіку функції у = f(х) + g(х)(бо f(х 0) + g(x 0) = y 1+y2),. причому будь-яка точка графіка функції y = f(x) + g(x)може бути отримана в такий спосіб. Отже, графік функції у = f(x) + g(x)можна отримати з графіків функцій y = f(x). і y = g(х)заміною кожної точки ( х n , у 1) графік функції y = f(x)точкою (х n, y 1 + y 2),де у 2 = g(x n), тобто зсувом кожної точки ( х n , у 1) графіка функції y = f(x)вздовж осі уна величину y 1 = g(х n). При цьому розглядаються лише такі точки х n для яких визначено обидві функції y = f(x)і y = g(x).

Такий метод побудови графіка функції y = f(x) + g(х) називається додаванням графіків функцій y = f(x)і y = g(x)

Приклад 4. На малюнку методом складання графіків побудовано графік функції
y = x + sinx.

При побудові графіка функції y = x + sinxми вважали, що f(x) = x,а g(x) = sinx.Для побудови графіка функції виберемо крапки з aбцисами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значення f(x) = x, g(x) = sinx, y = x + sinxобчислимо у вибраних точках і результати помістимо у таблиці.


"Натуральний логарифм" - 0,1. Натуральні логарифми. 4. "Логарифмічний дартс". 0,04. 7. 121.

«Ступінна функція 9 клас» - У. Кубічна парабола. У = х3. 9 клас вчитель Ладошкіна І.А. У = х2. Гіперболу. 0. У = хn, у = х-n де n - задане натуральне число. Х. Показник – парне натуральне число (2n).

«Квадратична функція» - 1 Визначення квадратичні функції 2 Властивості функції 3 Графіки функції 4 Квадратичні нерівності 5 Висновок. Властивості: Нерівності: Підготував учень 8А класу Герліц Андрій. План: Графік: -проміжки монотонності при а > 0 при а< 0. Квадратичная функция. Квадратичные функции используются уже много лет.

«Квадратична функція та її графік» - Решение.у=4x А(0,5:1) 1=1 А-належить. При а=1 формула у=аx набуває вигляду.

«8 клас квадратична функція» - 1) Побудувати вершину параболи. Побудова графіка квадратичної функції. x. -7. Побудувати графік функції. Алгебра 8 клас Учитель 496 школи Бовіна Т. В. -1. План побудови. 2) Побудувати вісь симетрії x=-1. y.