Биографии Характеристики Анализ

Пример математической модели. Определение, классификация и особенности

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

Учебное пособие


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Международный университет бизнеса и новых технологий (институт)

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

для студентов высших учебных заведений.


Бобков С.П. Моделирование систем: учеб. пособие / С.П. Бобков,

Д.О. Бытев; Иван. гос. хим.-технол. ун-т. – Иваново, 2008. – 156 с. - ISBN

Цель учебного пособия – дать студентам общее представление о со- временных методах моделирования технических и технико-экономических систем и объектов.

В пособии рассматриваются общие вопросы и современная методо-

логия моделирования, непрерывные и дискретные детерминированные мо-

дели объектов и систем, стохастические модели с дискретным и непрерыв- ным временем. Большое внимание уделено методам имитационного моде- лирования систем с вероятностными характеристиками. Дается обзор дру- гих подходов к моделированию сложных систем, таких как информацион- но-энтропийный, использование нейронных сетей и сетей Петри.

Учебное пособие предназначено для студентов, обучающихся по специальностям подготовки 080801 «Прикладная информатика» и 230201

«Информационные системы и технологии». Кроме того, пособие может быть полезным для студентов других специальностей и направлений.

Табл.7. Ил.92. Библиогр.:10 назв.

Печатается по решению редакционно-издательского совета Иванов-

ского государственного химико-технологического университета.

Рецензенты:

кафедра прикладной математики Ивановского государственного энергетического университета; доктор физико-математических наук В.А.Соколов, (Ярославский государственный университет).

ISBN 5-9616-0268-6 © ГОУ ВПО Ивановский государст- венный химико-технологический университет», 2008


1.5. Понятие математической схемы моделирования. . . . . . . . . . . . . . 12

1.6. Общая методика создания математических моделей. . . . . . . . . . . 13

1.7. Основные понятия системного подхода к созданию

математических моделей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1. Математические модели технических объектов. . . . . . . . . . . . . . . 20

2.1.1. Компонентные функциональные уравнения объектов. . . . . 20

2.1.2. Фазовые переменные и их аналогии. . . . . . . . . . . . . . . . . . . . 23

2.1.3. Топологические уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4. Примеры создания моделей технических объектов. . . . . . . 25

2.1.5. Модели технологических аппаратов. . . . . . . . . . . . . . . . . . . 29

2.2. Конечные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1. Понятие конечного автомата. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2. Способы описания и классы конечных автоматов. . . . . . . . 32

2.2.3. Другие виды конечных автоматов. . . . . . . . . . . . . . . . . . . . . 37

3. СТОХАСТИЧЕСКИЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Элементы теории марковских случайных процессов. . . . . . . . . . . 39

3.1.1. Понятие случайного процесса. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2. Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3. Стационарное распределение вероятностей. . . . . . . . . . . . . 43

3.1.4. Непрерывные марковские цепи. . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5. Уравнения А.Н. Колмогорова. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6. Потоки событий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Основы теории массового обслуживания. . . . . . . . . . . . . . . . . . . . . 51

3.2.1. Обобщенная структурная схема СМО. Параметры

и характеристики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2. Разомкнутые СМО с ожиданием и терпеливыми заявками. 58

3.2.3. Предельные варианты разомкнутой СМО. . . . . . . . . . . . . . . 62

3.2.4.Общий случай разомкнутой СМО. . . . . . . . . . . . . . . . . . . . . . 64

3.2.5. Замкнутые СМО. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.6. Сети массового обслуживания

с простейшими потоками событий. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3. Вероятностные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


4. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Определение метода имитационного моделирования. . . . . . . . . .
4.2. Основные понятия имитационного моделирования. . . . . . . . . . . .
4.3. Основные этапы имитационного моделирования. . . . . . . . . . . . . .
4.4. Время в имитационных моделях. Псевдопараллелизм. . . . . . . . . .
4.5. Обобщённые алгоритмы имитационного моделирования. . . . . . .
4.6. Моделирование случайных факторов. . . . . . . . . . . . . . . . . . . . . . . .
4.6.1. Моделирование базовых случайных величин. . . . . . . . . . . .
4.6.2. Моделирование непрерывных случайных величин
с произвольным распределением. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3. Моделирование дискретных случайных величин. . . . . . . . .
4.6.4. Моделирование случайных событий и их потоков. . . . . . .
4.7 Моделирование случайных процессов. . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Непрерывные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . .
4.8. Обработка и анализ результатов имитационного моделирования.
4.8.1. Оценка вероятностных параметров. . . . . . . . . . . . . . . . . . . .
4.8.2. Оценка корреляционных параметров. . . . . . . . . . . . . . . . . . .
4.8.3. Расчет средних по времени параметров СМО. . . . . . . . . . . .
4.9. Планирование экспериментов с имитационными моделями. . . . .
4.10. Общие проблемы имитационного моделирования. . . . . . . . . . . .
5. ОБЗОР АЛЬТЕРНАТИВНЫХ ПОДХОДОВ К МОДЕЛИРОВАНИЮ
СЛОЖНЫХ СИСТЕМ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1. Сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1. Определение сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2. Функционирование сети Петри. . . . . . . . . . . . . . . . . . . . . . . .
5.1.3. Анализ сетей Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2. Нейронные сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1. Понятие нейронной сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2. Искусственный нейрон. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3. Основные виды активационных функций искусственных
нейронов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4. Виды простейших нейронных сетей. . . . . . . . . . . . . . . . . . . .
5.2.5. Рекуррентные и самоорганизующиеся нейронные сети. . .
5.2.6. Общие замечания по использованию нейронных сетей. . . .
5.3. Информационно-энтропийный подход к моделированию систем
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .

ВВЕДЕНИЕ

Моделирование является универсальным методом получения и использо- вания знаний об окружающем мире. Моделирование всегда используется чело- веком в целенаправленной деятельности, особенно в исследовательской. В со- временных условиях усиливается роль и значение математического моделиро- вания, которое с развитием средств вычислительной техники часто стали назы- вать компьютерным.

Математические (компьютерные) модели, в силу своей логичности и строгого формального характера, позволяют выявить основные факторы, опре- деляющие свойства изучаемых систем и исследовать их реакции на внешние воздействия и изменения параметров. Часто математические модели проще и удобнее использовать, чем натуральные (физические). Они позволяют прово- дить вычислительные эксперименты, реальная постановка которых затруднена или невозможна.

Изучение основных принципов математического моделирования является неотъемлемой частью подготовки специалистов в технических областях дея- тельности. Дисциплины, связанные с изучением основных аспектов моделиро- вания объектов и систем в обязательном порядке входят в соответствующие учебные планы, являясь компонентами федеральных образовательных стандар- тов.

Целью данного учебного пособия является последовательное изложение современных методов моделирования. Пособие предназначено главным обра- зом для студентов, обучающихся по специальностям и направлениям «Инфор- мационные системы» и «Прикладная информатика (по отраслям». Однако, учи- тывая опыт преподавания подобных дисциплин в технических вузах, авторы сочли целесообразным не ограничиваться рассмотрением только информаци- онных систем, но и включить в текст рассмотрение технических и технико- экономических систем и объектов.

Материал пособия выстроен следующим образом. В первой главе рас- сматриваются общие вопросы и современная методология моделирования, ис- пользование системного подхода при создании математических моделей. Вто- рая глава посвящена рассмотрению непрерывных и дискретных детерминиро- ванных моделей объектов и систем. Предлагается использование метода анало- гий при синтезе и анализе моделей технических объектов различной физиче- ской природы. В третьей главе изучаются стохастические модели с дискретным и непрерывным временем. Большое внимание в пособии уделено методам ими- тационного моделирования систем с вероятностными характеристиками, что составляет содержание четвертой главы. В пятой главе дается обзор других подходов к моделированию сложных систем, таких как информационно- энтропийный, использование нейронных сетей и сетей Петри.


ОБЩИЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели:

инвариантная - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

аналитическая - запись модели в виде результата аналитического решения исходных уравнений модели;

алгоритмическая - запись соотношений модели и выбранного численного метода решения в форме алгоритма.

схемная (графическая) - представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

физическая

аналоговая

Наиболее универсальным является математическое описание процессов - математическое моделирование.

В понятие математического моделирования включают и процесс решения задачи на ЭВМ.

Обобщенная математическая модель

Математическая модель описывает зависимость между исходными данными и искомыми величинами.

Элементами обобщенной математической модели являются (рис. 1): множество входных данных (переменные) X,Y;

X - совокупность варьируемых переменных; Y - независимые переменные (константы);

математический оператор L, определяющий операции над этими данными; под которым понимается полная система математических операций, описывающих численные или логические соотношения между множествами входных и выходных данных (переменные);

множество выходных данных (переменных) G(X,Y); представляет собой совокупность критериальных функций, включающую (при необходимости) целевую функцию.

Математическая модель является математическим аналогом проектируемого объекта. Степень адекватности ее объекту определяется постановкой и корректностью решений задачи проектирования.

Множество варьируемых параметров (переменных) X образует пространство варьируемых параметров Rx (пространство поиска), которое является метрическим с размерностью n, равной числу варьируемых параметров.

Множество независимых переменных Y образуют метрическое пространство входных данных Ry. В том случае, когда каждый компонент пространства Ry задается диапазоном возможных значений, множество независимых переменных отображается некоторым ограниченным подпространством пространства Ry.

Множество независимых переменных Y определяет среду функционирования объекта, т.е. внешние условия, в которых будет работать проектируемый объект

Это могут быть:

  • - технические параметры объекта, не подлежащие изменению в процессе проектирования;
  • - физические возмущения среды, с которой взаимодействует объект проектирования;
  • - тактические параметры, которые должен достигать объект проектирования.

Выходные данные рассматриваемой обобщенной модели образуют метрическое пространство критериальных показателей RG.

Схема использования математической модели в системе автоматизированного проектирования показана на рис.2.


Требования к математической модели

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности.

Адекватность. Модель считается адекватной, если отражает заданные свойства с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта.

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. В пространстве внешних параметров выделить область адекватности модели, где погрешность меньше заданной предельно допустимой погрешности. Определение области адекватности моделей - сложная процедура, требующая больших вычислительных затрат, которые быстро растут с увеличением размерности пространства внешних параметров. Эта задача по объему может значительно превосходить задачу параметрической оптимизации самой модели, поэтому для вновь проектируемых объектов может не решаться.

Универсальность - определяется в основном числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации - затратами машинного времени и памяти.

Противоречивость требований к модели обладать широкой областью адекватности, высокой степени универсальности и высокой экономичности обусловливает использование ряда моделей для объектов одного и того же типа.

Методы получения моделей

Получение моделей в общем случае - процедура неформализованная. Основные решения, касающиеся выбора вида математических соотношений, характера используемых переменных и параметров, принимает проектировщик. В тоже время такие операции, как расчет численных значений параметров модели, определение областей адекватности и другие, алгоритмизированы и решаются на ЭВМ. Поэтому моделирование элементов проектируемой системы обычно выполняется специалистами конкретных технических областей с помощью традиционных экспериментальных исследований.

Методы получения функциональных моделей элементов делят на теоретические и экспериментальные.

Теоретические методы основаны на изучении физических закономерностей протекающих в объекте процессов, определении соответствующего этим закономерностям математического описания, обосновании и принятии упрощающих предположений, выполнении необходимых выкладок и приведении результата к принятой форме представления модели.

Экспериментальные методы основаны на использовании внешних проявлений свойств объекта, фиксируемых во время эксплуатации однотипных объектов или при проведении целенаправленных экспериментов.

Несмотря на эвристический характер многих операций моделирование имеет ряд положений и приемов, общих для получения моделей различных объектов. Достаточно общий характер имеют

методика макро моделирования,

математические методы планирования экспериментов,

алгоритмы формализуемых операций расчета численных значений параметров и определения областей адекватности.

Использование математических моделей

Вычислительная мощность современных компьютеров в сочетании с предоставлением пользователю всех ресурсов системы, возможностью диалогового режима при решении задачи и анализе результатов позволяют свести к минимуму время решения задачи.

При составлении математической модели от исследователя требуется:

изучить свойства исследуемого объекта;

умение отделить главные свойства объекта от второстепенных;

оценить принятые допущения.

Модель описывает зависимость между исходными данными и искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом.

Алгоритм решения задачи на ЭВМ связан с выбором численного метода. В зависимости от формы представления математической модели (алгебраическая или дифференциальная форма) используются различные численные методы.

Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей.

Рассмотрим вопросы классификации экономико-математических методов. Эти методы, как отмечено выше, представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики.

Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. Хотя общепринятая классификация этих дисциплин пока не выработана, с известной степенью приближения в составе экономико-математических методов можно выделить следующие разделы:

  • * экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем;
  • * математическая статистика: экономические приложения данной дисциплины -- выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, факторный анализ, теория индексов и др.;
  • * математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование и др.;
  • * методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений, теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное программирование, нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное программирование, стохастическое программирование, геометрическое программирование;
  • * методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым -- методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели индикативного планирования, модели теории фирмы и т. д.

Многие из методов, разработанных для централизованно планируемой экономики, могут оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики;

* методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отнести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению.

Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов.

Единой системы классификации таких моделей в настоящее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик.

По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления. Различные типы прикладных экономико-математических моделей как раз и рассматриваются в данном учебном пособии.

По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения, выделяют балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов и др.

По типу информации, используемой в модели, экономике-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и динамические, описывающие экономические системы в развитии.

По учету фактора неопределенности модели распадаются на детерминированные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора.

Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами, по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели,

Основные понятия математического моделирования модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получаются модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений; в качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определенных критериев. В частности, все оптимизационные модели относятся к типу нормативных; другим примером могут служить нормативные модели уровня жизни.

Рассмотрим в качестве примера экономико-математическую модель межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше классификационных рубрик это прикладная, макроэкономическая, аналитическая, дескриптивная, детерминированная, балансовая, матричная модель; при этом существуют как статические методы так и динамические

Линейное программирование -- это частный раздел оптимального программирования. В свою очередь оптимальное (математическое) программирование -- раздел прикладной математики, изучающий задачи условной оптимизации. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении.

Необходимым условием использования оптимального подхода к планированию и управлению (принципа оптимальности) является гибкость, альтернативность производственно- хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения. Именно такие ситуации, как правило, и составляют повседневную практику хозяйствующего субъекта (выбор производственной программы, прикрепление к поставщикам, маршрутизация, раскрой материалов, приготовление смесей и т.д.).

Суть принципа оптимальности состоит в стремлении выбрать такое планово-управленческое решение X = (xi, Х2 хп), где Ху, (у = 1. я) -- его компоненты, которое наилучшим образом учитывало бы внутренние возможности и внешние условия производственной деятельности хозяйствующего субъекта.

Слова «наилучшим образом» здесь означают выбор некоторого критерия оптимальности, т.е. некоторого экономического показателя, позволяющего сравнивать эффективность тех или иных планово-управленческих решений. Традиционные критерии оптимальности: «максимум прибыли», «минимум затрат», «максимум рентабельности» и др. Слова «учитывало бы внутренние возможности и внешние условия производственной деятельности» означают, что на выбор планово-управленческого решения (поведения) накладывается ряд условий, т.е. выбор X осуществляется из некоторой области возможных (допустимых) решений D; эту область называют также областью определения задачи. общая задача оптимального (математического) программирования, иначе -- математическая модель задачи оптимального программирования, в основе построения (разработки) которой лежат принципы оптимальности и системности.

Вектор X (набор управляющих переменных Xj, j = 1, п) называется допустимым решением, или планом задачи оптимального программирования, если он удовлетворяет системе ограничений. А тот план X (допустимое решение), который доставляет максимум или минимум целевой функции f(xi, *2, ..., хп), называется оптимальным планом (оптимальным поведением, или просто решением) задачи оптимального программирования.

Таким образом, выбор оптимального управленческого поведения в конкретной производственной ситуации связан с проведением с позиций системности и оптимальности экономико- математического моделирования и решением задачи оптимального программирования. Задачи оптимального программирования в наиболее общем виде классифицируют по следующим признакам.

  • 1. По характеру взаимосвязи между переменными --
  • а) линейные,
  • б) нелинейные.

В случае а) все функциональные связи в системе ограничений и функция цели -- линейные функции; наличие нелинейности хотя бы в одном из упомянутых элементов приводит к случаю б).

  • 2. По характеру изменения переменных --
  • а) непрерывные,
  • б) дискретные.

В случае а) значения каждой из управляющих переменных могут заполнять сплошь некоторую область действительных чисел; в случае б) все или хотя бы одна переменная могут принимать только целочисленные значения.

  • 3. По учету фактора времени --
  • а) статические,
  • б) динамические.

В задачах а) моделирование и принятие решений осуществляются в предположении о независимости от времени элементов модели в течение периода времени, на который принимается планово-управленческое решение. В случае б) такое предположение достаточно аргументированно принято не может быть и необходимо учитывать фактор времени.

  • 4. По наличию информации о переменных --
  • а) задачи в условиях полной определенности (детерминированные),
  • б) задачи в условиях неполной информации,
  • в) задачи в условиях неопределенности.

В задачах б) отдельные элементы являются вероятностными величинами, однако известны или дополнительными статистическими исследованиями могут быть установлены их законы распределения. В случае в) можно сделать предположение о возможных исходах случайных элементов, но нет возможности сделать вывод о вероятностях исходов.

  • 5. По числу критериев оценки альтернатив --
  • а) простые, однокритериальные задачи,
  • б) сложные, многокритериальные задачи.

В задачах а) экономически приемлемо использование одного критерия оптимальности или удается специальными процедурами (например, «взвешиванием приоритетов»)

ЛЕКЦИЯ 4

Определение и назначение математического моделирования

Под моделью (от латинского modulus - мера, образец, норма) будем понимать такой материально или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты. Процесс построения и использования модели называется моделированием.

Суть математического моделирования (ММ ) заключается в замене изучаемого объекта (процесса) адекватной математической моделью и последующем исследовании свойств этой модели с помощью либо аналитических методов, либо вычислительных экспериментов.

Иногда полезнее вместо того, чтобы давать строгие определения, описывать то или инее понятие на конкретном примере. Поэтому проиллюстри-руем приведенные выше определения ММ на примере задачи расчета удельного импульса. В начале 60-х годов перед учеными ставилась задача разработки ракетного топлива с наибольшим удельным импульсом. Принцип движения ракеты состоит в следующем: жидкое топливо и окислитель из баков ракеты подаются в двигатель, где происходит их сгорание, а продукты сгорания вылетают в атмосферу. Из закона сохранения импульса следует, что в этом ракета будет двигаться со скоростью.

Удельный импульс топлива – это полученный импульс, деленный на массу топлива. Проведение экспериментов было очень дорогостоящим и приводило к систематической порче оборудования. Оказалось, что легче и дешевле рассчитать термодинамические функции идеальных газов, вычислить с их помощью состав вылетающих газов и температуру плазмы, а затем и удельный импульс. То есть провести ММ процесса горения топлива.

Понятие математического моделирования (ММ) сегодня одно из самых распространенных в научной литературе . Подавляющее большинство современных дипломных и диссертационных работ связано с разработкой и использованием соответствующих математических моделей. Компьютерное ММ сегодня является составной частью многих областей человеческой деятельности (наука, техника, экономика, социология и т. д.). Это одна из причин сегодняшнего дефицита специалистов в области информационных технологий .

Бурный рост математического моделирования обусловлен стремительным совершенствованием вычислительной техники. Если еще 20 лет назад проведением численных расчетов занималось лишь небольшое число программистов, то теперь объем памяти и быстродействие современных компьютеров, позволяющих решать задачи математического моделирования доступных всем специалистам, включая студентов ВУЗов.

В любой дисциплине вначале дается качественное описание явлений. А затем уже – количественное, сформулированное в виде законов, устанавливающих связи между различными величинами (напряженность поля, интенсивность рассеяния, заряд электрона, …) в форме математических уравнений. Поэтому можно сказать, что в каждой дисциплине столько науки, сколько в ней есть математики, и этот факт позволяет успешно решать многие задачи методами математического моделирования.

Данный курс предназначен для студентов, специализирующихся в области прикладной математики, которые выполняют дипломные работы под руководством ведущих ученых, работающих в различных областях. Поэтому данный курс необходим не только как учебный материал, но и как подготовка к дипломной работе. Для изучения данного курса нам будут необходимы следующие разделы математики:

1. Уравнения математической физики (кантовая механика, газо - и гидродинамика)

2. Линейная алгебра (теория упругости)

3. Скалярные и векторные поля (теория поля)

4. Теория вероятностей (квантовая механика, статистическая физика, физическая кинетика)

5. Специальные функции.

6. Тензорный анализ (теория упругости)

7. Математический анализ

ММ в естествознании, технике, и экономике

Рассмотрим вначале различные разделы естествознания, техники, экономики, в которых используются математические модели.

Естествознание

Физика, устанавливающая основные законы естествознания, давно разделилась на теоретическую и экспериментальную. Выводом уравнений, описывающих физические явления, занимается теоретическая физика. Таким образом, теоретическая физика также может считаться одним из направлений математического моделирования. (Вспомним, что название первой книги по физике – «Математические начала натуральной философии» И. Ньютона можно перевести на современный язык как «Математические модели естествознания».) На основании полученных законов проводятся инженерные расчеты, которые проводятся в различных институтах, фирмах, КБ. Эти организации разрабатывают технологии изготовления современной продукции, которые являются наукоемкими.Таким образом, понятие наукоемкие технологии включает в себя расчеты с помощью соответствующих математических моделей.

Один из наиболее обширных разделов физики – классическая механика (иногда этот раздел называется теоретической или аналитической механикой). Данный раздел теоретической физики изучает движение и взаимодействие тел. Расчеты с помощью формул теоретической механики необходимы при изучении вращения тел (расчет моментов инерции, гиростатов – устройств сохраняющих в неподвижности оси вращения), анализе движения тела в безвоздушном пространстве, и др. Один из разделов теоретической механики называется теорией устойчивости и лежит в основе многих математических моделей, описывающих движение самолетов, кораблей, ракет. Разделы практической механики – курсы «Теория машин и механизмов», «Детали машин», изучается студентами почти всех технических вузов (включая МГИУ).

Теория упругости – часть раздела механики сплошных сред , предполагающая, что материал упругого тела однороден и непрерывно распределен по всему объему тела, так что самый малый элемент, вырезанный из тела, обладает теми же физическими свойствами, что и все тело. Приложение теории упругости – курс «сопротивление материалов», изучается студентами всех технических вузов (включая МГИУ). Данный раздел необходим для всех расчетов прочности. Здесь и расчет прочности корпусов кораблей, самолетов, ракет, расчет прочности стальных и железобетонных конструкций зданий и многое другое.

Газо- и гидродинамика , как и теория упругости – часть раздела механики сплошных сред , рассматривает законы движения жидкости и газа. Уравнения газо - и гидродинамики необходимы при анализе движения тел в жидкой и газообразной среде (спутники, подводные лодки, ракеты, снаряды, автомобили), при расчетах истечения газа из сопел двигателей ракет, самолетов. Практическое приложение гидродинамики – гидравлика (тормоз, руль,…)

Предыдущие разделы механики рассматривали движении тел в макромире, и физические законы макромира неприменимы в микромире, в котором движутся частицы вещества - протоны, нейтроны, электроны. Здесь действуют совершенно другие принципы, и для описания микромира необходима квантовая механика . Основное уравнение, описывающее поведение микрочастиц - уравнение Шредингера: . Здесь - оператор Гамильтона (гамильтониан). Для одномерного уравнения движения частицы https://pandia.ru/text/78/009/images/image005_136.gif" width="35" height="21 src=">-потенциальная энергия. Решение этого уравнения – набор собственных значений энергии и собственных функций..gif" width="55" height="24 src=">– плотность вероятности. Квантовомеханические расчеты нужны для разработки новых материалов (микросхемы), создания лазеров, разработки методов спектрального анализа, и др.

Большое количество задач решает кинетика , описывающая движение и взаимодействие частиц. Здесь и диффузия , теплообмен, теория плазмы – четвертого состояния вещества.

Статистическая физика рассматривает ансамбли частиц, позволяет сказать о параметрах ансамбля, исходя из свойств отдельных частиц. Если ансамбль состоит из молекул газа, то выведенные методами статистической физики свойства ансамбля представляют собой хорошо известные со средней школы уравнения газового состояния: https://pandia.ru/text/78/009/images/image009_85.gif" width="16" height="17 src=">.gif" width="16" height="17">-молекулярный вес газа. К – постоянная Ридберга. Статистическими методами рассчитываются также свойства растворов, кристаллов, электронов в металлах. ММ статистической физики – теоретическая основа термодинамики, которая лежит в основе расчета двигателей, тепловых сетей и станций.

Теория поля описывает методами ММ одну из основных форм материи – поле. При этом основной интерес представляют электромагнитные поля. Уравнения электромагнитного поля (электродинамики) были выведены Максвеллом: , , , . Здесь и https://pandia.ru/text/78/009/images/image018_44.gif" width="16" height="17"> - плотность заряда, -плотность тока. Уравнения электродинамики лежат в основе расчетов распространения электромагнитных волн, необходимых для описания распространения радиоволн (радио, телевидение, сотовая связь), объяснения работы радиолокационных станций.

Химию можно представить в двух аспектах, выделяя описательную химию – открытие химических факторов и их описание – и теоретическую химию – разработку теорий, позволяющих обобщить установленные факторы и представить их в виде определенной системы (Л. Полинг). Теоретическая химия называется также физической химией и является, в сущности, разделом физики, изучающей вещества и их взаимодействия. Поэтому все, что было сказано относительно физики, в полной мере относится и к химии. Разделами физической химии будут термохимия, изучающая тепловые эффекты реакций, химическая кинетика (скорости реакций), квантовая химия (строение молекул). При этом задачи химии бывают чрезвычайно сложными. Так, например, для решения задач квантовой химии – науки о строении атомов и молекул, используются программы, сравнимые по объему с программами ПВО страны. Например, для того, чтобы описать молекулу UCl4, состоящую из 5 ядер атомов и +17*4) электронов, нужно записать уравнение движения – уравнения в частных производных.

Биология

В биологию математика пришла по настоящему только во второй половине 20 века. Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Популяцией называется сообщество особей одного вида, занимающих некоторую область пространства на Земле. Эта область математической биологии, изучающая изменение численности популяции в различных условиях (наличие конкурирующих видов, хищников, болезней и т. п.) и в дальнейшем служила математическим полигоном, на котором "отрабатывались" математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.
Самая первая известная модель, сформулированная в биологической постановке, ‑ знаменитый ряд Фибоначчи (каждое последующее число является суммой двух предыдущих), который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, …

1,

2 ,

3,

5,

8, 13, …

Другим примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной мембране. Здесь для того, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки, необходимо создать модельную систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

Классическим примером ММ также является популяция дрозофилы. Еще более удобной моделью являются вирусы , которые можно размножать в пробирке. Методами моделирования в биологии служат методы динамической теории систем, а средствами - дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, имитационное моделирование.
Цели моделирования в биологии:
3. Выяснение механизмов взаимодействия элементов системы
4. Идентификация и верификация параметров модели по экспериментальным данным.
5. Оценка устойчивости системы (модели).

6. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
7. Оптимальное управление системой в соответствии с выбранным критерием оптимальности .

Техника

Совершенствованием техники занимается большое количество специалистов, которые в своей работе опираются на результаты научных исследований. Поэтому ММ в технике те же самые, что и ММ естествознания, о которых говорилось выше.

Экономика и социальные процессы

Принято считать, что математическое моделирование как метод анализа макроэкономических процессов было впервые применено лейб-медиком короля Людовика XV доктором Франсуа Кенэ , который в 1758 г. опубликовал работу «Экономическая таблица». В этой работе была сделана первая попытка количественно описать национальную экономику. А в 1838 г. в книге О. Курно «Исследование математических принципов теории богатства» количественные методы были впервые использованы для анализа конкуренции на рынке товара при различных рыночных ситуациях.

Широко известна также теория Мальтуса о народонаселении, в которой он предложил идею: рост населения далеко не всегда желателен, и рост этот идет быстрее, чем растут возможности обеспечения населения продовольствием. Математическая модель такого процесса достаточно проста: Пусть - прирост численности населения за время https://pandia.ru/text/78/009/images/image027_26.gif" width="15" height="24"> численность была равна . и - коэффициенты, учитывающие рождаемость и смертность (чел/год). Тогда

https://pandia.ru/text/78/009/images/image032_23.gif" width="151" height="41 src=">Инструментальные и математические методы " href="/text/category/instrumentalmznie_i_matematicheskie_metodi/" rel="bookmark">математические методы анализа (например, в последние десятилетия в гуманитарных науках появились математические теории развития культуры, построены и исследованы математические модели мобилизации, циклического развития социокультурных процессов, модель взаимодействия народа и правительства, модель гонки вооружений и др.).

В самых общих чертах процесс ММ социально-экономических процессов условно можно подразделить на четыре этапа:

    формулировка системы гипотез и разработка концептуальной модели; разработка математической модели; анализ результатов модельных расчетов, который включает сравнение их с практикой; формулировка новых гипотез и уточнение модели в случае несоответствия результатов расчетов и практических данных.

Отметим, что, как правило, процесс математического моделирования носит циклический характер, поскольку даже при исследовании сравнительно простых процессов редко удается с первого шага построить адекватную математическую модель и подобрать точные ее параметры.

В настоящее время экономика рассматривается как сложная развивающаяся система, для количественного описания которой применяются динамические математические модели различной степени сложности. Одно из направлений исследования макроэкономической динамики связано с построением и анализом относительно простых нелинейных имитационных моделей, отражающих взаимодействие различных подсистем – рынка труда, рынка товаров, финансовой системы , природной среды и др.

Успешно развивается теория катастроф. Эта теория рассматривает вопрос об условиях, при которых изменение параметров нелинейной системы вызывает перемещение точки в фазовом пространстве, характеризующей состояние системы, из области притяжения к начальному положению равновесия в область притяжения к другому положению равновесия. Последнее очень важно не только для анализа технических систем, но и для понимания устойчивости социально-экономических процессов. В этой связи представляют интерес выводы о значении исследования нелинейных моделей для управления. В книге «Теория катастроф», опубликованной в 1990 г., он, в частности, пишет: «…нынешняя перестройка во многом объясняется тем, что начали действовать хотя бы некоторые механизмы обратной связи (боязнь личного уничтожения)».

(параметры модели)

При построении моделей реальных объектов и явлений часто приходится сталкиваться с недостатком информации. Для исследуемого объекта распределение свойств, параметры воздействия и начальное состояние известны с той или иной степенью неопределенности. При построении модели возможны следующие варианты описания неопределенных параметров:

Классификация математических моделей

(методы реализации)

Методы реализации ММ можно классифицировать в соответствии с таблицей, приведенной ниже.

Методы реализации ММ

Очень часто аналитическое решение для модели представляется в виде функций. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора), и значение функции при каждом значении аргумента определяется приближенно. Модели, использующие такой прием, называются приближенными .

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т. е. переходом от функций непрерывного аргумента к функциям дискретного аргумента (сеточные методы).

Найденное после расчетов на компьютере решение принимается за приближен-ное решение исходной задачи.

Большинство существующих систем является очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие системы следует изучать с помощью имитационного моделирования . Один из основных приемов имитационного моделирования связан с применением датчика случайных чисел.

Так как огромное количество задач решается методами ММ, то способы реализации ММ изучаются не в одном учебном курсе. Здесь и уравнения в частных производных, численные методы решения этих уравнений, вычислительная математика, компьютерное моделирование и т. п.

ПОЛИНГ, ЛАЙНУС КАРЛ (Pauling, Linus Carl) (), американский химик и физик, удостоенный в 1954 Нобелевской премии по химии за исследования природы химической связи и определение структуры белков. Родился 28 февраля 1901 в Портленде (шт. Орегон). В разработал квантовомеханический метод изучения строения молекул (наряду с американским физиком Дж. Слейером) - метод валентных связей, а также теорию резонанса, позволяющую объяснить строение углеродосодержащих соединений, прежде всего соединений ароматического ряда. В период культа личности СССР ученые, занимавшиеся квантовой химией подвергались гонениям и обвинялись в «полингизме».

МАЛЬТУС, ТОМАС РОБЕРТ (Malthus, Thomas Robert) (), английский экономист. Родился в Рукери близ Доркинга в Суррее 15 или 17 февраля 1766. В 1798 анонимно опубликовал труд Опыт о законе народонаселения. В 1819 Мальтус был избран членом Королевского общества.

Модель (от лат. modulus - мера) и моделирование являются общенаучными понятиями. Моделирование с общенаучной точки зрения выступает как способ познания с помощью построения особых объектов, систем – моделей исследуемых объектов, явлений или процессов. При этом тот или иной объект называют моделью тогда, когда он используется для получения информации относительно другого объекта – прототипа модели.

Метод моделирования используется фактически во всех без исключения науках и на всех этапах научного исследования. Эвристическая сила этого метода определяется тем, что с помощью метода моделирования удается свести изучение сложного к простому, невидимого и неощутимого и видимому и ощутимому и т.д.

При исследовании какого-то объекта (процесса или явления) с помощью метода моделирования, в качестве модели можно выбрать те свойства, которые нас в данный момент интересуют. Научное исследование любого объекта всегда относительно. В конкретном исследовании нельзя рассмотреть объект во всем его многообразии. Следовательно, один и тот же объект может иметь много различных моделей и ни про одну из них нельзя сказать, что она единственная, настоящая модель данного объекта.

Принято различать четыре основных свойства моделей:

· упрощенность по сравнению с изучаемым объектом;

· способность отражать или воспроизводить объект исследования;

· возможность замещать объект исследования на определенных этапах его познания;

· возможность получать новую информацию об изучаемом объекте.

Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

Прежде чем создать математическую модель объекта (процесса или явления) его длительно изучают различными методами: наблюдением, специально организованными экспериментами, теоретическим анализом и т.д., то есть достаточно хорошо изучают качественную сторону явления, выявляют отношения, в которых находятся элементы объекта. Затем объект упрощается, из всего многообразия присущих ему свойств выделяются наиболее существенные. При необходимости делаются предположения об имеющихся связях с окружающим миром.

Как указывалось ранее, любая модель не тождественна самому явлению, она только дает некоторое приближение к действительности. Но в модели перечислены все предположения, которые положены в ее основу. Эти предположения могут быть грубыми и тем не менее давать вполне удовлетворительное приближение к реальности. Для одного и того же явления может быть построено несколько моделей, в том числе и математических. Например, описать движение планет Солнечной системы можно с помощью:

8 модели Кеплера, которая состоит из трех законов, включая математические формулы (уравнение эллипса);

8 модели Ньютона, которая состоит из одной формулы, но тем не менее она более общая и точная.

В оптике рассматривалось несколько моделей света: корпускулярная, волновая и электромагнитная. Для них были выведены многочисленные закономерности количественного характера. Каждая из этих моделей требовала своего математического подхода и соответствующих математических средств. Корпускулярная оптика пользовалась средствами евклидовой геометрии и пришла к выводу законов отражения и преломления света. Волновая модель теории света потребовала новых математических идей и чисто вычислительным путем были открыты новые факты, относящиеся к явлениям дифракции и интерференции света, которые ранее не наблюдались. Геометрическая оптика, связанная с корпускулярной моделью, здесь оказалась бессильной.

Построенная модель должна быть такой, чтобы она могла замещать в исследованиях объект (процесс или явление), должна иметь с ним сходные черты. Сходство достигается либо за счет подобия структуры (изоморфизм), либо аналогии в поведении или функционировании (изофункциональность). Опираясь на сходство структуры или функции модели и оригинала в современной технике проверяют, рассчитывают и проектируют сложнейшие системы, машины и сооружения.

Как указывалось выше, для одного и того же объекта, процесса или явления может быть построено много различных моделей. Некоторые из них (не обязательно все) могут оказаться изоморфными. Например, в аналитической геометрии кривая на плоскости используется в качестве модели соответствующего уравнения с двумя переменными. В этом случае модель (кривая) и прототип (уравнение) являются изоморфнымти системами (точек, лежащих на кривой, и соответствующих пар чисел, удовлетворяющих уравнению),

В книге «Математика ставит эксперимент» академик Н.Н.Моисеев пишет, что любая математическая модель может возникнуть тремя путями:

· В результате прямого изучения и осмысления объекта (процесса или явления) (феноменологическая) (пример – уравнения, описывающие динамику атмосферы, океана),

· В результате некоторого процесса дедукции, когда новая модель получается как частный случай более общей модели (асимптоматическая) (пример – уравнения гидро-термодинамики атмосферы),

· В результате некоторого процесса индукции, когда новая модель является естественным обобщением «элементарных» моделей (модель ансамблей или обобщенная модель).

Процесс разработки математических моделей состоит из следующих этапов :

· формулирование проблемы;

· определение цели моделирования;

· организация и проведение исследования предметной области (исследование свойств объекта моделирования);

· разработка модели;

· проверка ее точности и соответствия реальности;

· практическое использование, т.е. перенос полученных с помощью модели знаний на исследуемый объект или процесс.

Особое значение моделирование как способ познания законов и явлений природы приобретает в изучении объектов, недоступных в полной мере прямому наблюдению или экспериментированию. К ним относятся и социальные системы, единственно возможным способом изучения которых, зачастую служит моделирование.

Общих способов построения математических моделей не существует. В каждом конкретном случае нужно исходить из имеющихся данных, целевой направленности, учитывать задачи исследования, а также соразмерять точность и подробность модели. Она должна отражать важнейшие черты явления, существенные факторы, от которых в основном зависит успех моделирования.

При разработке моделей необходимо придерживаться следующих основных методологических принципов моделирования социальных явлений:

· принципа проблемности, предполагающего движение не от готовых "универсальных" математических моделей к проблемам, а от реальных, актуальных проблем - к поиску, разработке специальных моделей;

· принципа системности, рассматривающего все взаимосвязи моделируемого явления в терминах элементов системы и ее среды;

· принципа вариативности при формализации процессов управления, связанного со специфическими различиями законов развития природы и общества. Для его объяснения необходимо раскрыть коренное отличие моделей общественных процессов от моделей, описывающих явления природы.

Лекция № 1

Введение. Понятие математических моделей и методов

Раздел 1. Введение

2. Методы построения математических моделей. Понятие о системном подходе. 1

3. Основные понятия математического моделирования экономических систем.. 4

4. Методы аналитического, имитационного и натурного моделирования. 5

Контрольные вопросы.. 6

1. Содержание, цели и задачи дисциплины «Методы моделирования»

Настоящая дисциплина посвящена изучению методов моделирования и практическому применению полученных знаний. Целью дисциплины является обучение студентов общим вопросам теории моделирования, методам построения математических моделей и формального описания процессов и объектов, применению математических моделей для проведения вычислительных экспериментов и решения оптимизационных задач, с использованием современных вычислительных средств.

В задачи дисциплины входит:

Ознакомить студентов с основными понятиями теории математического моделирования, теории систем, теории подобия, теории планирования эксперимента и обработки экспериментальных данных, используемых для построения математических моделей,

Дать студентам навыки в области постановки задачи моделирования, математического описания объектов /процессов/, численных методов реализации математических моделей на ЭВМ и решения оптимизационных задач.

В результате изучения дисциплины студент должен освоить методы математического моделирования процессов и объектов от постановки задачи до реализации математических моделей на ЭВМ и оформления результатов исследования моделей.

Курс дисциплины рассчитан на 12 лекций и 12 практических работ. В результате изучения дисциплины студент должен освоить методы математического моделирования от постановки задачи до реализации математических моделей на ЭВМ

2. Методы построения математических моделей. Понятие о системном подходе

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

4. Методы аналитического, имитационного и натурного моделирования

Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т. п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.

Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т. д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т. п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования.

Контрольные вопросы

Сформулируйте определение процесса моделирования. Что такое модель? Свойства моделирования. Сформулируйте основные этапы построения модели классическим методом. Сформулируйте основные этапы построения модели при системном подходе. Назовите функции моделей. Каковы этапы процесса решения экономических задач? Основные разновидности процесса моделирования.