Біографії Характеристики Аналіз

Як перевірити парність чи непарність функції. Парність та непарність функції
















Назад вперед

Увага! Попередній перегляд слайдів використовується виключно для ознайомлення та може не давати уявлення про всі можливості презентації. Якщо вас зацікавила ця робота, будь ласка, завантажте повну версію.

Цілі:

  • сформувати поняття парності та непарності функції, вивчати вмінню визначати та використовувати ці властивості при дослідженні функцій, побудові графіків;
  • розвивати творчу активність учнів, логічне мислення, вміння порівнювати, узагальнювати;
  • виховувати працьовитість, математичну культуру; розвивати комунікативні якості .

Обладнання:мультимедійне встановлення, інтерактивна дошка, роздатковий матеріал.

Форми роботи:фронтальна та групова з елементами пошуково-дослідницької діяльності.

Інформаційні джерела:

1. Алгебра9клас А.Г Мордкович. Підручник
2. Алгебра 9клас А.Г Мордкович. Задачник.
3. Алгебра 9 клас. Завдання для навчання та розвитку учнів. Бєлєнкова Є.Ю. Лебедінцева Є.А

ХІД УРОКУ

1. Організаційний момент

Постановка цілей та завдань уроку.

2. Перевірка домашнього завдання

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f(х), f(х) =

б) f (–2) = –3; f (0) = –1; f(5) = 69;

в) 1. D( f) = [– 2; + ∞)
2. Е( f) = [– 3; + ∞)
3. f(х) = 0 при х ~ 0,4
4. f(х) >0 при х > 0,4 ; f(х) < 0 при – 2 < х < 0,4.
5. Функція зростає за х € [– 2; + ∞)
6. Функція обмежена знизу.
7. унай = – 3, унаиб не існує
8. Функція безперервна.

(Ви використали алгоритм дослідження функції?) Слайд.

2. Таблицю, яку вам задавалася, перевіримо на слайд.

Заповніть таблицю

Область визначення

Нулі функції

Проміжки знаковості

Координати точок перетину графіка з ОУ

х = -5,
х = 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ∞ -5,
х ≠ 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ≠ -5,
х ≠ 2

х € (–∞; –5) U
U (2; ∞)

х € (–5; 2)

3. Актуалізація знань

– Надано функції.
– Вказати область визначення кожної функції.
– Порівняти значення кожної функції для кожної пари значення аргументу: 1 та – 1; 2 та – 2.
– Для яких з даних функцій у області визначення виконуються рівність f(– х) = f(х), f(– х) = – f(х)? (отримані дані занести до таблиці) Слайд

f(1) та f(– 1) f(2) та f(– 2) графіки f(– х) = –f(х) f(– х) = f(х)
1. f(х) =
2. f(х) = х 3
3. f(х) = | х |
4.f(х) = 2х – 3
5. f(х) =

х ≠ 0

6. f(х)= х > –1

і не визна.

4. Новий матеріал

- Виконуючи цю роботу, хлопці ми виявили ще одну властивість функції, незнайому вам, але не менш важливу, ніж інші - це парність і непарність функції. Запишіть тему уроку: «Парні та непарні функції», наше завдання – навчитися визначати парність та непарність функції, з'ясувати значущість цієї якості у дослідженні функцій та побудові графіків.
Отже, знайдемо визначення у підручнику та прочитаємо (стор. 110) . Слайд

Опр. 1Функція у = f (х), задана на множині Х називається парноїякщо для будь-якого значення хЄ Х виконується рівність f(-х) = f(х). Наведіть приклади.

Опр. 2Функція у = f(х), задана на множині Х називається непарнийякщо для будь-якого значення хЄ Х виконується рівність f(-х) = -f (х). Наведіть приклади.

Де ми зустрічалися з термінами «парні» та «непарні»?
Які з цих функцій будуть парними, на вашу думку? Чому? Які непарні? Чому?
Для будь-якої функції виду у= х n, де n- ціле число можна стверджувати, що функція непарна при n- непарному і функція парна при n- парному.
- Функції виду у= і у = 2х– 3 є ні парним, ні непарними, т.к. не виконуються рівності f(– х) = – f(х), f(– х) = f(х)

Вивчення питання у тому, чи є функція парної чи непарної називають дослідженням функції на парність.Слайд

У визначеннях 1 і 2 йшлося про значення функції при х і - х, тим самим передбачається, що функція визначена і при значенні х, і при - х.

Опр 3.Якщо числова множина разом з кожним своїм елементом х містить і протилежний елемент -х, то множина Хназивають симетричною множиною.

Приклади:

(-2; 2), [-5; 5]; (∞;∞) – симетричні множини, а , [–5;4] – несиметричні.

– У парних функцій область визначення – симетрична множина? У непарних?
- Якщо ж D( f) – несиметрична множина, то функція яка?
– Отже, якщо функція у = f(х) – парна чи непарна, то її область визначення D( f) – симетрична множина. А чи вірне зворотне твердження, якщо область визначення функції симетричне безліч, вона парна, чи непарна?
– Значить наявність симетричної множини області визначення – це необхідна умова, але недостатня.
– То як же досліджувати функцію на парність? Спробуємо скласти алгоритм.

Слайд

Алгоритм дослідження функції на парність

1. Встановити, чи симетрична область визначення функції. Якщо ні, то функція не є ні парною, ні непарною. Якщо так, то перейдіть до кроку 2 алгоритму.

2. Скласти вираз для f(–х).

3. Порівняти f(–х).і f(х):

  • якщо f(–х).= f(х), то функція парна;
  • якщо f(–х).= – f(х), то функція непарна;
  • якщо f(–х) ≠ f(х) та f(–х) ≠ –f(х), то функція не є ні парною, ні непарною.

Приклади:

Дослідити на парність функцію а) у= х 5+; б) у=; в) у= .

Рішення.

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симетрична множина.

2) h (-х) = (-х) 5 + - х5 - = - (х 5 +),

3) h(-х) = - h(х) => функція h(х)= х 5 + непарна.

б) у =,

у = f(х), D(f) = (–∞; –9)? (–9; +∞), несиметрична множина, отже функція ні парна, ні непарна.

в) f(х) = , у = f (х),

1) D( f) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

Варіант 2

1. Чи є симетричною задана множина: а) [–2;2]; б) (∞; 0], (0; 7)?


а); б) у = х · (5 - х 2). 2. Дослідіть на парність функцію:

а) у = х 2 · (2х - х 3), б) у =

3. На рис. побудований графік у = f(х), для всіх х, що задовольняють умові х? 0.
Побудуйте графік функції у = f(х), якщо у = f(х) - парна функція.

3. На рис. побудований графік у = f(х), для всіх х, які задовольняють умові х? 0.
Побудуйте графік функції у = f(х), якщо у = f(х) - непарна функція.

Взаємоперевірка з слайд.

6. Завдання додому: №11.11, 11.21,11.22;

Доказ геометричного сенсу якості парності.

***(Завдання варіанта ЄДІ).

1. Непарна функція у = f(х) визначена на всій числовій прямій. Для будь-якого невід'ємного значення змінної x значення цієї функції збігається зі значенням функції g( х) = х(х + 1)(х + 3)(х- 7). Знайдіть значення функції h ( х) = при х = 3.

7. Підбиття підсумків

Які тією чи іншою мірою були вам знайомі. Там було помічено, що запас властивостей функцій поступово поповнюватиметься. Про дві нові властивості і йтиметься у цьому параграфі.

Визначення 1.

Функцію у = f(x), х є Х, називають парною, якщо для будь-якого значення х із множини X виконується рівність f(-х) = f(х).

Визначення 2.

Функцію у = f(x), х є X, називають непарною, якщо для будь-якого значення х із множини X виконується рівність f(-х) = -f(х).

Довести, що у = х 4 – парна функція.

Рішення. Маємо: f(х) = х4, f(-х) = (-х)4. Але (-х) 4 = х4. Отже, будь-якого х виконується рівність f(-х) = f(х), тобто. функція є парною.

Аналогічно можна довести, що функції у - х 2, у = х 6, у - х 8 є парними.

Довести, що у = х 3 ~ непарна функція.

Рішення. Маємо: f(х) = х3, f(-х) = (-х)3. Але (-х) 3 = -х 3. Отже, будь-якого х виконується рівність f(-х) = -f(х), тобто. функція є непарною.

Аналогічно можна довести, що функції у = х, у = х 5, у = х 7 є непарними.

Ми з вами неодноразово переконувалися у цьому, нові терміни в математиці найчастіше мають «земне» походження, тобто. їх можна якимось чином пояснити. Так і з парними, і з непарними функціями. Дивіться: у - х 3, у = х 5, у = х 7 - непарні функції, тоді як у = х 2, у = х 4, у = х 6 - парні функції. І взагалі для будь-якої функції виду у = х "(нижче ми спеціально займемося вивченням цих функцій), де n - натуральне число, можна дійти невтішного висновку: якщо n - непарне число, то функція у = х" - непарна; якщо ж n - парне число, то функція у = хn - парна.

Існують і функції, які не є ні парними, ні непарними. Така, наприклад, функція у = 2х + 3. Справді, f(1) = 5, а f(-1) = 1. Як бачите, тут Значить, не може виконуватись ні тотожність f(-х) = f ( х), ні тотожність f(-х) = -f(х).

Отже, функція може бути парною, непарною, а також жодною.

Вивчення питання, чи є задана функція парної чи непарної, зазвичай називають дослідженням функції на парність.

У визначеннях 1 і 2 йдеться про значення функції у точках х і -х. Тим самим передбачається, що функція визначена і в точці х, і в точці -х. Це означає, що точка -х належить області визначення функції одночасно з точкою х. Якщо числове безліч X разом із кожним своїм елементом містить і протилежний елемент -х, то X називають симетричним безліччю. Скажімо, (-2, 2), [-5, 5], (-оо, +оо) - симетричні множини, тоді як \).

Оскільки \(x^2\geqslant 0\) , то ліва частина рівняння (*) більша або дорівнює \(0+ \mathrm(tg)^2\,1\) .

Таким чином, рівність (*) може виконуватися тільки тоді, коли обидві частини рівняння дорівнюють \(\mathrm(tg)^2\,1\) . А це означає, що \[\begin(cases) 2x^2+\mathrm(tg)^2\,1=\mathrm(tg)^2\,1 \\ \mathrm(tg)\,1\cdot \mathrm(tg)\ ,(\cos x)=\mathrm(tg)^2\,1 \end(cases) \quad\Leftrightarrow\quad \begin(cases) x=0\\ \mathrm(tg)\,(\cos x) =\mathrm(tg)\,1 \end(cases)\quad\Leftrightarrow\quad x=0\]Отже, значення \(a=-\mathrm(tg)\,1\) нам підходить.

Відповідь:

\(a\in \(-\mathrm(tg)\,1;0\)\)

Завдання 2 #3923

Рівень завдання: Рівний ЄДІ

Знайдіть усі значення параметра \(a\) , при кожному з яких графік функції \

симетричний щодо початку координат.

Якщо графік функції симетричний щодо початку координат, то така функція є непарною, тобто виконано \(f(-x)=-f(x)\) для будь-якого \(x\) з області визначення функції. Таким чином, потрібно знайти значення параметра, при яких виконано \(f(-x)=-f(x).\)

\[\begin(aligned) &3\mathrm(tg)\,\left(-\dfrac(ax)5\right)+2\sin \dfrac(8\pi a+3x)4= -\left(3\) mathrm(tg)\,\left(\dfrac(ax)5\right)+2\sin \dfrac(8\pi a-3x)4\right)\quad \Rightarrow\quad -3\mathrm(tg)\ ,\dfrac(ax)5+2\sin \dfrac(8\pi a+3x)4= -\left(3\mathrm(tg)\,\left(\dfrac(ax)5\right)+2\ sin \dfrac(8\pi a-3x)4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac(8\pi a+3x)4+\sin \dfrac(8\pi a- 3x)4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac(8\pi a+3x)4+\dfrac(8\pi a-3x)4\right)\cdot \cos \dfrac12 \left(\dfrac(8\pi a+3x)4-\dfrac(8\pi a-3x)4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \ frac34 x=0 \end(aligned)\]

Останнє рівняння має бути виконане для всіх \(x\) з області визначення \(f(x)\) , отже, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb(Z)\).

Відповідь:

\(\dfrac n2, n\in\mathbb(Z)\)

Завдання 3 #3069

Рівень завдання: Рівний ЄДІ

Знайдіть всі значення параметра \(a\) , при кожному з яких рівняння має 4 рішення, де \(f\) – парна періодична з періодом \(T=\dfrac(16)3\) функція, визначена на всій числовій прямій , причому \(f(x)=ax^2\) при \(0\leqslant x\leqslant \dfrac83.\)

(Завдання від передплатників)

Оскільки \(f(x)\) – парна функція, то її графік симетричний щодо осі ординат, отже, при \(-\dfrac83\leqslant x\leqslant 0\)\(f(x)=ax^2\) . Таким чином, при \(-\dfrac83\leqslant x\leqslant \dfrac83\), А це відрізок довжиною \(\dfrac(16)3\), функція \(f(x)=ax^2\).

1) Нехай \ (a> 0 \). Тоді графік функції \(f(x)\) виглядатиме так:


Тоді для того, щоб рівняння мало 4 рішення, потрібно, щоб графік \(g(x)=|a+2|\cdot \sqrtx\) проходив через точку \(A\) :


Отже, \[\dfrac(64)9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &9(a+2)=32a\\ &9(a +2)=-32a \end(aligned) \end(gathered)\right. \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &a=\dfrac(18)(23)\\ &a=-\dfrac(18)(41) \end(aligned) \end( gathered)\right.\]Оскільки \(a>0\), то підходить \(a=\dfrac(18)(23)\).

2) Нехай (a)<0\) . Тогда картинка окажется симметричной относительно начала координат:


Потрібно, щоб графік \(g(x)\) пройшов через точку \(B\) : \[\dfrac(64)9a=|a+2|\cdot \sqrt(-8) \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &a=\dfrac(18)(23 )\\ &a=-\dfrac(18)(41) \end(aligned) \end(gathered)\right.\]Бо \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) Випадок, коли \(a=0\) , не підходить, тому що тоді \(f(x)=0\) при всіх \(x\) , \(g(x)=2\sqrtx\) та рівняння матиме лише 1 корінь.

Відповідь:

\(a\in \left\(-\dfrac(18)(41);\dfrac(18)(23)\right\)\)

Завдання 4 #3072

Рівень завдання: Рівний ЄДІ

Знайдіть усі значення \(a\) , при кожному з яких рівняння \

має хоча б один корінь.

(Завдання від передплатників)

Перепишемо рівняння у вигляді \ і розглянемо дві функції: \(g(x)=7\sqrt(2x^2+49)\) та \(f(x)=3|x-7a|-6|x|-a^2+7a\ ).
Функція \(g(x)\) є парною, має точку мінімуму \(x=0\) (причому \(g(0)=49\)).
Функція \(f(x)\) при \(x>0\) є спадною, а при \(x<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Дійсно, при \(x>0\) другий модуль розкриється позитивно (\(|x|=x\) ), отже, незалежно від того, як розкриється перший модуль, \(f(x)\) буде дорівнює \( kx+A\) , де \(A\) - вираз від \(a\) , а \(k\) одно або \(-9\) , або \(-3\) . При \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Знайдемо значення \(f\) у точці максимуму: \

Для того, щоб рівняння мало хоча б одне рішення, потрібно, щоб графіки функцій (f) і (g) мали хоча б одну точку перетину. Отже, потрібно: \ \\]

Відповідь:

\(a\in \(-7\)\cup\)

Завдання 5 #3912

Рівень завдання: Рівний ЄДІ

Знайдіть усі значення параметра \(a\) , при кожному з яких рівняння \

має шість різних рішень.

Зробимо заміну \((\sqrt2)^(x^3-3x^2+4)=t\) , \(t>0\) . Тоді рівняння набуде вигляду \ Поступово виписуватимемо умови, за яких вихідне рівняння матиме шість рішень.
Зауважимо, що квадратне рівняння \((*)\) може мати максимум два рішення. Будь-яке кубічне рівняння (Ax^3+Bx^2+Cx+D=0\) може мати не більше трьох рішень. Отже, якщо рівняння \((*)\) має два різні рішення (позитивних!, оскільки \(t\) має бути більше нуля) \(t_1\) і \(t_2\) , то, зробивши зворотну заміну, ми отримаємо: \[\left[\begin(gathered)\begin(aligned) &(\sqrt2)^(x^3-3x^2+4)=t_1\\ &(\sqrt2)^(x^3-3x^2 +4)=t_2\end(aligned)\end(gathered)\right.\]Оскільки будь-яке позитивне число можна представити як \(\sqrt2\) якоюсь мірою, наприклад, \(t_1=(\sqrt2)^(\log_(\sqrt2) t_1)\), то перше рівняння сукупності перепишеться як \ Як ми вже говорили, будь-яке кубічне рівняння має не більше трьох рішень, отже, кожне рівняння із сукупності матиме не більше трьох рішень. А значить, і вся сукупність матиме не більше шести рішень.
Отже, щоб вихідне рівняння мало шість рішень, квадратне рівняння \((*)\) повинно мати два різні рішення, а кожне отримане кубічне рівняння (з сукупності) повинно мати три різні рішення (причому жодне рішення одного рівняння не повинно співпадати з яким або рішенням другого!)
Очевидно, якщо квадратне рівняння \((*)\) матиме одне рішення, то ми ніяк не отримаємо шість рішень у вихідного рівняння.

Таким чином, план рішення стає зрозумілим. Давайте по пунктах випишемо умови, які мають виконуватися.

1) Щоб рівняння \((*)\) мало два різні рішення, його дискримінант має бути позитивним: \

2) Також потрібно, щоб обидва корені були позитивними (бо \(t>0\) ). Якщо добуток двох коренів позитивний і сума їх позитивна, то і самі корені будуть позитивними. Отже, потрібно: \[\begin(cases) 12-a>0\\(a-10)>0\end(cases)\quad\Leftrightarrow\quad a<10\]

Таким чином, ми вже забезпечили собі два різні позитивні корені \(t_1\) і \(t_2\).

3) Давайте подивимося на таке рівняння \ При яких \(t\) воно матиме три різні рішення?
Розглянемо функцію \(f(x)=x^3-3x^2+4\).
Можна розкласти на множники: \ Отже, її нулі: \ (x = -1; 2 \).
Якщо знайти похідну \(f"(x)=3x^2-6x\) , ми отримаємо дві точки екстремуму \(x_(max)=0, x_(min)=2\) .
Отже, графік виглядає так:


Ми, будь-яка горизонтальна пряма \(y=k\) , де \(0 \(x^3-3x^2+4=\log_(\sqrt2) t\)мало три різні рішення, потрібно, щоб (0<\log_ {\sqrt2}t<4\) .
Таким чином, потрібно: \[\begin(cases) 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Давайте також відразу зауважимо, що якщо числа \(t_1\) і \(t_2\) різні, то і числа \(\log_(\sqrt2)t_1\) і \(\log_(\sqrt2)t_2\) будуть різні, значить, і рівняння \(x^3-3x^2+4=\log_(\sqrt2) t_1\)і \(x^3-3x^2+4=\log_(\sqrt2) t_2\)матимуть коріння, що не співпадає між собою.
Систему \((**)\) можна переписати так: \[\begin(cases) 1

Таким чином, ми визначили, що обидва корені рівняння \((*)\) повинні лежати в інтервалі \((1;4)\). Як записати цю умову?
У певному вигляді виписувати коріння ми будемо.
Розглянемо функцію \(g(t)=t^2+(a-10)t+12-a\). Її графік - парабола з гілками вгору, яка має дві точки перетину з віссю абсцис (ця умова ми записали в пункті 1). Як має виглядати її графік, щоб точки перетину з віссю абсцис були в інтервалі \((1;4)\)? Так:


По-перше, значення \(g(1)\) та \(g(4)\) функції в точках \(1\) і \(4\) повинні бути позитивними, по-друге, вершина параболи \(t_0\) ) повинна також бути в інтервалі \((1;4)\) . Отже, можна записати систему: \[\begin(cases) 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) завжди має як мінімум один корінь \(x=0\) . Отже, для виконання умови завдання потрібно, щоб рівняння \

мало чотири різні корені, відмінні від нуля, що представляють разом з (x=0) арифметичну прогресію.

Зауважимо, що функція \(y=25x^4+25(a-1)x^2-4(a-7)\) є парною, отже, якщо \(x_0\) є коренем рівняння \((*)\ ) , то \(-x_0\) буде його коренем. Тоді необхідно, щоб корінням цього рівняння були впорядковані за зростанням числа: \(-2d, -d, d, 2d\) (тоді \(d>0\) ). Саме тоді дані п'ять чисел утворюватимуть арифметичну прогресію (з різницею (d)).

Щоб цим корінням були числа \(-2d, -d, d, 2d\) , потрібно, щоб числа \(d^(\,2), 4d^(\,2)\) були корінням рівняння \(25t^2 +25(a-1)t-4(a-7)=0\). Тоді за теоремою Вієта:

Перепишемо рівняння у вигляді \ і розглянемо дві функції: \(g(x)=20a-a^2-2^(x^2+2)\) та \(f(x)=13|x|-2|5x+12a|\) .
Функція \(g(x)\) має точку максимуму \(x=0\) (причому \(g_(\text(верш))=g(0)=-a^2+20a-4\)):
\(g"(x)=-2^(x^2+2)\cdot \ln 2\cdot 2x\). Нуль похідної: \ (x = 0 \). При \(x<0\) имеем: \(g">0\) при \(x>0\) : \(g"<0\) .
Функція \(f(x)\) при \(x>0\) є зростаючою, а при \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Дійсно, при \(x>0\) перший модуль розкриється позитивно (\(|x|=x\) ), отже, незалежно від того, як розкриється другий модуль, \(f(x)\) буде дорівнює \( kx+A\) , де \(A\) - вираз від \(a\) , а \(k\) одно або \(13-10=3\) , або \(13+10=23\) . При \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Знайдемо значення \(f\) у точці мінімуму: \

Для того, щоб рівняння мало хоча б одне рішення, потрібно, щоб графіки функцій (f) і (g) мали хоча б одну точку перетину. Отже, потрібно: \ Вирішуючи цю сукупність систем, отримаємо відповідь: \\]

Відповідь:

\(a\in \(-2\)\cup\)