Biograafiad Omadused Analüüs

17-kohaline numbri nimi. Suurtel numbritel on suured nimed

Araabia numbrite nimetustes kuulub iga number oma kategooriasse ja iga kolm numbrit moodustavad klassi. Seega näitab numbri viimane number selles olevate ühikute arvu ja seda nimetatakse vastavalt ühikute kohaks. Järgmine, lõpust teine, number tähistab kümneid (kümnete arv) ja kolmas number lõpust näitab sadade arvu numbris - sadade number. Edasi korduvad numbrid igas klassis täpselt samamoodi, tähistades ühikuid, kümneid ja sadu tuhandete, miljonite jne klassides. Kui arv on väike ja ei sisalda kümne- või sajakohalist numbrit, on tavaks võtta need nulliks. Klassid rühmitavad numbreid kolmekaupa, sageli arvutusseadmetes või kirjetes asetatakse klasside vahele punkt või tühik, et neid visuaalselt eraldada. Seda tehakse suurte numbrite lugemise hõlbustamiseks. Igal klassil on oma nimi: kolm esimest numbrit on ühikute klass, millele järgneb tuhandete klass, seejärel miljonite, miljardite (või miljardite) klass ja nii edasi.

Kuna kasutame kümnendsüsteemi, on suuruse põhiühikuks kümme ehk 10 1 . Vastavalt sellele suureneb numbri numbrite arvu suurenemisega ka kümnendite arv 10 2, 10 3, 10 4 jne. Teades kümnete arvu, saate hõlpsasti määrata arvu klassi ja kategooria, näiteks 10 16 on kümned kvadriljonid ja 3 × 10 16 on kolmkümmend kvadriljonit. Arvude jaotamine kümnendkomponentideks toimub järgmiselt - iga number kuvatakse eraldi liikmena, korrutatuna vajaliku koefitsiendiga 10 n, kus n on numbri asukoht loenduses vasakult paremale.
Näiteks: 253 981 = 2 × 10 6 + 5 × 10 5 + 3 × 10 4 + 9 × 10 3 + 8 × 10 2 + 1 × 10 1

Samuti kasutatakse kümnendkohtade kirjutamisel ka 10 astet: 10 (-1) on 0,1 ehk üks kümnendik. Sarnaselt eelmise lõiguga saab ka kümnendarvu dekomponeerida, sel juhul näitab n komast paremalt vasakule järgneva numbri asukohta, näiteks: 0,347629 = 3x10 (-1) +4x10 (-2) +7x10 (-3) +6x10 (-4) +2x10 (-5) +9x10 (-6)

Kümnendarvude nimetused. Kümnendarvud loetakse viimase numbri järgi pärast koma, näiteks 0,325 - kolmsada kakskümmend viis tuhandikku, kus tuhandikud on viimase numbri 5 number.

Suurte arvude, numbrite ja klasside nimede tabel

1. klassi üksus 1. ühiku number
2. koht kümme
3. koht sadu
1 = 10 0
10 = 10 1
100 = 10 2
2. klassi tuhat 1. numbri ühikud tuhandeid
2. number kümneid tuhandeid
3. järjekoht sadu tuhandeid
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3. klassi miljonid 1. numbri ühikud miljonit
2. number kümneid miljoneid
3. number sadu miljoneid
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4. klassi miljardeid 1. number ühikut miljardit
2. number kümned miljardid
3. number sadu miljardeid
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5. klassi triljonid 1. number triljon ühikut
2. number kümneid triljoneid
Kolmas number sada triljonit
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6. klassi kvadrillionid 1. number kvadriljon ühikut
2. number kümned kvadriljonid
3. number kümneid kvadriljoneid
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7. klassi kvintiljonid Kvintiljonite 1. numbri ühikud
2. number kümned kvintiljonid
3. järgu sada kvintiljonit
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8. klassi sekstillionid 1. number sekstiljoni ühikut
2. number kümneid sektiljoneid
3. järgu sada sektilljonit
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9. klassi septiljon Septiljoni 1. numbri ühikud
2. number kümned septiljonid
3. järgu sada septillin
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10. klassi oktiljon 1. numbri oktiljoni ühikut
2. number kümme oktiljonit
3. järgu sada oktiljonit
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

Kunagi lapsepõlves õppisime lugema kümneni, siis sajani, siis tuhandeni. Mis on siis suurim number, mida teate? Tuhat, miljon, miljard, triljon ... Ja siis? Keegi ütleb, et Petallion eksib, sest ta ajab SI eesliite segamini täiesti erineva mõistega.

Tegelikult pole küsimus nii lihtne, kui esmapilgul tundub. Esiteks räägime tuhande võimude nimede nimetamisest. Ja siin on esimene nüanss, mida paljud Ameerika filmidest teavad, et nad nimetavad meie miljardit miljardiks.

Veelgi enam, kaalusid on kahte tüüpi - pikad ja lühikesed. Meie riigis kasutatakse lühikest skaalat. Sellel skaalal suureneb mantis igal sammul kolme suurusjärgu võrra, s.o. korrutada tuhandega - tuhat 10 3, miljon 10 6, miljard / miljard 10 9, triljon (10 12). Pikas skaalas tuleb pärast miljardit 10 9 miljard 10 12 ja tulevikus kasvab mantisa juba kuue suurusjärgu võrra ning järgmine arv, mida nimetatakse triljoniks, tähistab juba 10 18.

Aga tagasi meie omamaise skaala juurde. Kas soovite teada, mis tuleb pärast triljonit? Palun:

10 3 tuhat
106 miljonit
109 miljardit
10 12 triljonit
10 15 kvadriljonit
10 18 kvintiljonit
10 21 sekstiljonit
10 24 septillionit
10 27 oktiljonit
10 30 mittemiljonit
10 33 miljardit
10 36 kahtlemata
10 39 dodetsillion
10 42 tredecillion
10 45 quattuordecillion
10 48 kvindecilljonit
10 51 sedecillion
10 54 septdetsillion
10 57 duodevigintiljonit
10 60 undevigintiljonit
10 63 vigintiljonit
10 66 anvigintillion
10 69 duovigintiljonit
10 72 trevigintiljonit
10 75 quattorvigintillion
10 78 kvinvintillionit
10 81 seksvigintiljonit
10 84 septemvigintiljonit
10 87 oktovigintiljonit
10 90 novemvigintillion
10 93 trigintiljonit
10 96 antirigintillion

Sellel numbril meie lühike skaala püsti ei seisa ja tulevikus kasvab mantiss järk-järgult.

10 100 googolit
10 123 kvadragintiljonit
10 153 kvinkvagintiljonit
10 183 seksagintiljonit
10 213 septuagintiljonit
10 243 oktogintiljonit
10 273 nonagintiljonit
10 303 miljonit
10 306 sajandikku
10 309 sentduollion
10 312 senti triljonit
10 315 sentkvadriljonit
10 402 tsentritrigintiljonit
10 603 korralikku
10 903 tsentrilist miljardit
10 1203 kvadringentilljonit
10 1503 kvingentillionit
10 1803 sentimiljonit
10 2103 seitset miljardit
10 2403 oktingendiljonit
10 2703 mittemiljonit
10 3003 miljonit
10 6003 kaks miljonit
10 9003 miljardit
10 3000003 miamimiljonit
10 6000003 duomyamimiliaiillion
10 10 100 googolplex
10 3 × n + 3 miljardit

googol(inglise keelest googol) - kümnendarvusüsteemis olev arv, mida esindab 100 nulliga ühik:
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
1938. aastal jalutas Ameerika matemaatik Edward Kasner (Edward Kasner, 1878-1955) oma kahe õepojaga pargis ja arutas nendega suuri numbreid. Vestluse käigus rääkisime saja nulliga numbrist, millel polnud oma nime. Üks tema õepoegadest, üheksa-aastane Milton Sirotta, soovitas sellele numbrile "googoliks" helistada. 1940. aastal kirjutas Edward Kasner koos James Newmaniga populaarteadusliku raamatu "Matemaatika ja kujutlusvõime" ("New Names in Mathematics"), kus ta õpetas matemaatikahuvilistele googoli arvu.
Mõistel "googol" pole tõsist teoreetilist ja praktilist tähendust. Kasner pakkus selle välja kujuteldamatult suure arvu ja lõpmatuse erinevuse illustreerimiseks ning selleks kasutatakse terminit mõnikord ka matemaatika õpetamisel.

Googolplex(inglise keelest googolplex) - arv, mida esindab nullide googoliga ühik. Sarnaselt googoliga võtsid termini googolplex kasutusele Ameerika matemaatik Edward Kasner ja tema vennapoeg Milton Sirotta.
Googolide arv on suurem kui meile teadaolevas universumi osas kõigi osakeste arv, mis jääb vahemikku 1079 kuni 1081. Seega ei saa (googol + 1) numbritest koosnevate googolplexide arvu kirjutada klassikaline kümnendvorm, isegi kui kogu teadaolev aine muudab universumi osad paberiks ja tindiks või arvuti kettaruumiks.

Zillion(eng. zillion) on väga suurte arvude üldnimetus.

Sellel terminil pole ranget matemaatilist määratlust. 1996. aastal Conway (inglise J. H. Conway) ja Guy (inglise R. K. Guy) oma raamatus Inglise keel. Arvude raamat määratles lühikese skaala arvude nimetamise süsteemi jaoks miljon n-ndast astmest 10 3 × n+3.

Lapsena piinas mind küsimus, mis on kõige suurem number ja vaevasin peaaegu kõiki selle rumala küsimusega. Olles teada saanud arvu üks miljon, küsisin, kas on olemas number, mis on suurem kui miljon. Miljard? Ja rohkem kui miljard? triljon? Ja rohkem kui triljon? Lõpuks leiti keegi tark, kes seletas mulle, et küsimus on rumal, kuna piisab, kui kõige suuremale numbrile lisada üks ja selgub, et see pole kunagi olnud suurim, kuna on veel suuremaid numbreid.

Ja nüüd, pärast paljusid aastaid, otsustasin esitada veel ühe küsimuse, nimelt: Mis on suurim arv, millel on oma nimi?Õnneks on nüüd Internet ja saate neid mõistatada kannatlike otsingumootoritega, mis ei nimeta minu küsimusi idiootseteks ;-). Tegelikult ma tegin seda ja selle tulemusena sain teada järgmiselt.

Number Ladina nimi Vene eesliide
1 unus en-
2 duo duo-
3 tres kolm-
4 quattuor neli-
5 quinque kvinti-
6 seks seksikas
7 septembril septi-
8 okto okti-
9 nov mitte-
10 decem otsustada-

Numbrite nimetamiseks on kaks süsteemi – Ameerika ja inglise keel.

Ameerika süsteem on üles ehitatud üsna lihtsalt. Kõik suurte arvude nimed on üles ehitatud nii: alguses on ladinakeelne järgarv ja lõpus lisatakse sellele liide -miljon. Erandiks on nimi "miljon", mis on tuhande numbri nimi (lat. mille) ja suurendusliidet -miljon (vt tabelit). Nii saadakse arvud – triljon, kvadriljon, kvintiljon, sekstiljon, septill, oktillion, mittemiljon ja detsiljon. Ameerika süsteemi kasutatakse USA-s, Kanadas, Prantsusmaal ja Venemaal. Nullide arvu Ameerika süsteemis kirjutatud arvus saate teada lihtsa valemi 3 x + 3 abil (kus x on ladina number).

Ingliskeelne nimesüsteem on maailmas kõige levinum. Seda kasutatakse näiteks Suurbritannias ja Hispaanias, aga ka enamikus endistes Inglise ja Hispaania kolooniates. Arvude nimetused selles süsteemis on üles ehitatud nii: nii: ladina numbrile lisatakse järelliide -miljon, järgmine arv (1000 korda suurem) ehitatakse põhimõttel - sama ladina number, kuid järelliide on - miljardit. See tähendab, et pärast triljonit inglise süsteemis tuleb triljon ja alles siis kvadriljon, millele järgneb kvadriljon jne. Seega on kvadriljon Inglise ja Ameerika süsteemi järgi täiesti erinevad arvud! Nullide arvu ingliskeelses süsteemis kirjutatud ja sufiksiga -miljon lõppevas arvus saate teada valemiga 6 x + 3 (kus x on ladina number) ja valemiga 6 x + 6 numbritega lõppevate arvude jaoks. - miljardit.

Ainult arv miljard (10 9) läks inglise süsteemist vene keelde, mida siiski oleks õigem nimetada nii, nagu ameeriklased seda nimetavad - miljard, kuna oleme Ameerika süsteemi omaks võtnud. Aga kes meie riigis midagi reeglite järgi teeb! ;-) Muide, mõnikord kasutatakse sõna triljard ka vene keeles (saate ise veenduda, kui käivitate otsingu Google või Yandex) ja see tähendab ilmselt 1000 triljonit, s.o. kvadriljon.

Lisaks Ameerika või Inglise süsteemis ladina eesliiteid kasutades kirjutatud numbritele on tuntud ka nn süsteemivälised numbrid, s.o. numbrid, millel on oma nimed ilma ladina eesliideteta. Selliseid numbreid on mitu, aga neist räägin lähemalt veidi hiljem.

Läheme tagasi ladina numbritega kirjutamise juurde. Näib, et nad suudavad numbreid kirjutada lõpmatuseni, kuid see pole täiesti tõsi. Nüüd selgitan, miks. Esiteks vaatame, kuidas nimetatakse numbreid 1 kuni 10 33:

Nimi Number
Üksus 10 0
Kümme 10 1
Sada 10 2
Tuhat 10 3
Miljon 10 6
Miljardit 10 9
triljon 10 12
kvadriljon 10 15
Kvintiljon 10 18
Sextillion 10 21
Septillion 10 24
Oktiljon 10 27
Kvintiljon 10 30
Decillion 10 33

Ja nii, nüüd tekib küsimus, mis edasi. Mis on decillion? Põhimõtteliselt on muidugi võimalik eesliiteid kombineerides tekitada selliseid koletisi nagu: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion ja novemdecillion, kuid need on juba liitnimed. meie enda nimede numbrid. Seetõttu saate selle süsteemi kohaselt lisaks ülaltoodule ikkagi ainult kolm pärisnime - vigintillion (alates lat. viginti- kakskümmend), sentillion (alates lat. protsenti- sada) ja miljon (alates lat. mille- tuhat). Roomlastel ei olnud arvude jaoks rohkem kui tuhat pärisnime (kõik üle tuhande arvud olid liitarvud). Näiteks helistas miljon (1 000 000) roomlast centena milia ehk kümmesada tuhat. Ja nüüd, tegelikult tabel:

Seega ei saa sarnase süsteemi järgi suuremaid numbreid kui 10 3003, millel oleks oma, mitteliitnimi! Kuid sellest hoolimata on teada numbreid, mis on suuremad kui miljon – need on samad süsteemivälised numbrid. Lõpuks räägime neist.

Nimi Number
lugematu arv 10 4
googol 10 100
Asankheyya 10 140
Googolplex 10 10 100
Skuse teine ​​number 10 10 10 1000
Mega 2 (Moseri tähistusega)
Megiston 10 (Moseri tähistusega)
Moser 2 (Moseri tähistusega)
Grahami number G 63 (Grahami tähistuses)
Stasplex G 100 (Grahami tähistuses)

Väikseim selline arv on lugematu arv(see on isegi Dahli sõnastikus), mis tähendab sadasada, see tähendab 10 000. Tõsi, see sõna on vananenud ja praktiliselt ei kasutata, kuid on kurioosne, et sõna "müriaad" kasutatakse laialdaselt, mis tähendab mitte kindlat. üldse arv, aga lugematu, loendamatu hulk asju. Arvatakse, et sõna myriad (inglise myriad) tuli Euroopa keeltesse Vana-Egiptusest.

googol(inglise googolist) on number kümme kuni saja astmeni, st üks saja nulliga. Esimest korda kirjutas "googolist" 1938. aastal Ameerika matemaatik Edward Kasner ajakirja Scripta Mathematica jaanuarinumbri artiklis "New Names in Mathematics". Tema sõnul soovitas tema üheksa-aastane õepoeg Milton Sirotta suurt numbrit "googoliks" kutsuda. See number sai tuntuks tänu temanimelisele otsingumootorile. Google. Pange tähele, et "Google" on kaubamärk ja googol on number.

Kuulsas budistlikus traktaadis Jaina Sutra, mis pärineb aastast 100 eKr, on mitmeid asankhiya(hiina keelest asentzi- arvutamatu), võrdne 10 140. Arvatakse, et see arv on võrdne nirvaana saamiseks vajalike kosmiliste tsüklite arvuga.

Googolplex(Inglise) googolplex) - samuti Kasneri koos oma vennapojaga leiutatud arv, mis tähendab nullide googoliga numbrit ehk 10 10 100. Kasner ise kirjeldab seda "avastust" järgmiselt:

Lapsed räägivad tarkusesõnu vähemalt sama sageli kui teadlased. Nime "googol" mõtles välja laps (dr. Kasneri üheksa-aastane õepoeg), kellel paluti välja mõelda nimi väga suurele numbrile, nimelt 1-le, mille järel on sada nulli. kindel, et see arv ei olnud lõpmatu, ja seetõttu sama kindel, et sellel pidi olema nimi googol, kuid on siiski lõplik, nagu nime leiutaja kiires tähelepanu juhtis.

Matemaatika ja kujutlusvõime(1940), Kasner ja James R. Newman.

Isegi rohkem kui googolplexi arv, pakkus Skewesi arvu välja Skewes 1933. aastal (Skewes. J. Londoni matemaatika. soc. 8 , 277-283, 1933.) Riemanni oletuse tõestamisel algarvude kohta. See tähendab e ulatuses e ulatuses e astmeni 79, see tähendab e e e 79. Hiljem Riele (te Riele, H. J. J. "Erinevuse märgist P(x)-Li(x)." Matemaatika. Arvuta. 48 , 323-328, 1987) vähendas Skewesi arvu e e 27/4-ni, mis on ligikaudu võrdne 8,185 10 370-ga. On selge, et kuna Skewesi arvu väärtus sõltub arvust e, siis see ei ole täisarv, nii et me seda ei käsitle, vastasel juhul peaksime meelde tuletama muid mittelooduslikke arve - arv pi, arv e, Avogadro arv jne.

Kuid tuleb märkida, et on olemas teine ​​Skewesi arv, mida matemaatikas tähistatakse kui Sk 2 , mis on isegi suurem kui esimene Skewesi arv (Sk 1). Skuse teine ​​number, tutvustas samas artiklis J. Skuse, tähistamaks arvu, milleni Riemanni hüpotees kehtib. Sk 2 võrdub 10 10 10 10 3 , see tähendab 10 10 10 1000 .

Nagu te mõistate, mida rohkem kraadi on, seda raskem on aru saada, kumb arvudest on suurem. Näiteks Skewesi arve vaadates on ilma spetsiaalsete arvutusteta peaaegu võimatu aru saada, kumb neist kahest arvust on suurem. Seega on ülisuurte arvude puhul võimsuste kasutamine ebamugav. Pealegi võite selliseid numbreid välja mõelda (ja need on juba leiutatud), kui kraadide kraadid lihtsalt ei mahu lehele. Jah, milline leht! Need ei mahu isegi kogu universumi suurusesse raamatusse! Sel juhul tekib küsimus, kuidas neid kirja panna. Probleem, nagu aru saate, on lahendatav ja matemaatikud on selliste arvude kirjutamiseks välja töötanud mitmeid põhimõtteid. Tõsi, iga matemaatik, kes seda ülesannet küsis, tuli välja oma kirjutamisviisiga, mis viis numbrite kirjutamise mitmete omavahel mitteseotud viisideni - need on Knuthi, Conway, Steinhouse'i jne tähistused.

Mõelge Hugo Stenhausi tähistusele (H. Steinhaus. Matemaatilised pildid, 3. edn. 1983), mis on üsna lihtne. Steinhouse soovitas kirjutada suuri numbreid geomeetriliste kujundite – kolmnurga, ruudu ja ringi – sisse:

Steinhouse tuli välja kahe uue ülisuure numbriga. Ta nimetas numbri Mega, ja number on Megiston.

Matemaatik Leo Moser täpsustas Stenhouse’i tähistust, mida piiras asjaolu, et kui oli vaja kirjutada megistonist palju suuremaid numbreid, tekkisid raskused ja ebamugavused, kuna üksteise sisse tuli tõmmata palju ringe. Moser soovitas joonistada ruutude järele mitte ringe, vaid viisnurki, seejärel kuusnurki jne. Ta pakkus välja ka nende hulknurkade jaoks formaalse tähistuse, et numbreid saaks kirjutada ilma keerulisi mustreid joonistamata. Moseri märge näeb välja selline:

Seega Moseri tähistuse järgi kirjutatakse Steinhouse'i mega 2 ja megiston 10. Lisaks soovitas Leo Moser nimetada hulknurka, mille külgede arv on võrdne mega - megagoniga. Ja ta pakkus välja numbri "2 in Megagon", see tähendab 2. See number sai tuntuks kui Moseri number või lihtsalt kui moser.

Kuid moser pole suurim arv. Suurim arv, mida kunagi matemaatilises tõestuses on kasutatud, on piirväärtus, mida tuntakse kui Grahami number(Graham "s number), mida kasutati esmakordselt 1977. aastal Ramsey teooria ühe hinnangu tõestuseks. Seda seostatakse bikromaatiliste hüperkuubikutega ja seda ei saa väljendada ilma spetsiaalse 64-tasemelise spetsiaalsete matemaatiliste sümbolite süsteemita, mille Knuth tutvustas 1976. aastal.

Kahjuks ei saa Knuthi noodikirjas kirjutatud arvu Moseri tähistusse tõlkida. Seetõttu tuleb ka seda süsteemi selgitada. Põhimõtteliselt pole selles ka midagi keerulist. Donald Knuth (jah, jah, see on sama Knuth, kes kirjutas programmeerimise kunsti ja lõi TeX-i redaktori) tuli välja superjõu kontseptsiooniga, mille ta tegi ettepaneku kirjutada ülespoole suunatud nooltega:

Üldiselt näeb see välja selline:

Ma arvan, et kõik on selge, nii et tuleme tagasi Grahami numbri juurde. Graham pakkus välja niinimetatud G-arvud:

Hakati helistama numbrile G 63 Grahami number(sageli tähistatakse seda lihtsalt kui G). See arv on suurim teadaolev arv maailmas ja on isegi kantud Guinnessi rekordite raamatusse. Ja siin on see, et Grahami arv on suurem kui Moseri arv.

P.S. Selleks, et kogu inimkonnale suurt kasu tuua ja sajandeid kuulsaks saada, otsustasin suurima arvu ise välja mõelda ja nimetada. Sellele numbrile helistatakse stasplex ja see on võrdne arvuga G 100 . Jäta see meelde ja kui teie lapsed küsivad, mis on maailma suurim number, öelge neile, et sellele numbrile helistatakse stasplex.

Värskendus (4.09.2003): Aitäh kõigile kommentaaride eest. Selgus, et teksti kirjutades tegin mitu viga. Proovin seda nüüd parandada.

  1. Tegin mitu viga korraga, mainisin vaid Avogadro numbri. Esiteks on mitmed inimesed mulle tähelepanu juhtinud, et 6,022 10 23 on tegelikult kõige loomulikum arv. Ja teiseks on olemas arvamus, mis mulle tundub tõsi, et Avogadro arv ei ole üldse arv selle sõna õiges matemaatilises tähenduses, kuna see sõltub ühikute süsteemist. Nüüd väljendatakse seda "mol -1", aga kui seda väljendatakse näiteks moolides või milleski muus, siis see väljendub hoopis teistsugusel arvul, kuid see ei lakka üldse olema Avogadro number.
  2. 10 000 - pimedus
    100 000 - leegion
    1 000 000 - leodre
    10 000 000 – ronk või ronk
    100 000 000 - tekk
    Huvitaval kombel armastasid ka muistsed slaavlased suuri numbreid, nad oskasid lugeda kuni miljardini. Veelgi enam, nad nimetasid sellist kontot "väikeseks kontoks". Mõnes käsikirjas pidasid autorid ka "suurt krahvi", mis ulatus numbrini 10 50 . Arvude kohta, mis on suuremad kui 10 50, öeldi: "Ja rohkemgi, et mõista inimmõistust." "Väikeses kontos" kasutatud nimed kanti üle "suurele kontole", kuid erineva tähendusega. Niisiis, pimedus ei tähendanud enam 10 000, vaid miljonit leegionit – nende (miljonite miljonite) pimedust; leodrus - leegion leegion (10 kuni 24 kraadi), siis öeldi - kümme leodrit, sada leodrit, ... ja lõpuks sada tuhat leegionit leodreid (10 kuni 47); leodr leodrit (10 kuni 48) kutsuti ronkaks ja lõpuks tekiks (10 kuni 49).
  3. Numbrite rahvuslike nimede teemat saab laiendada, kui meenutada Jaapani numbrite nimetamise süsteemi, mille ma unustasin, mis erineb oluliselt inglise ja ameerika süsteemidest (ma ei joonista hieroglüüfe, kui kedagi huvitab, siis need on):
    100-ichi
    10 1 - jyuu
    10 2 - hüaku
    103-sen
    104 - mees
    108-oku
    10 12 - vali
    10 16 - kei
    10 20 - gai
    10 24 - jyo
    10 28 - jyou
    10 32 - kou
    10 36-kan
    10 40 - sei
    1044 - sai
    1048 - goku
    10 52 - gougasya
    10 56 - asougi
    10 60 - nayuta
    1064 - fukashigi
    10 68 - murioutaisuu
  4. Hugo Steinhausi numbrite osas (Venemaal tõlgiti tema nimi millegipärast Hugo Steinhausiks). botev kinnitab, et idee kirjutada ülisuured arvud numbrite kujul ringidesse ei kuulu Steinhouse'ile, vaid Daniil Kharmsile, kes juba ammu enne teda avaldas selle idee artiklis "Raising the Number". Samuti tahan tänada Jevgeni Sklyarevskit, venekeelse Interneti meelelahutusliku matemaatika kõige huvitavama saidi - Arbuzi - autorit teabe eest, et Steinhouse pakkus välja mitte ainult numbrid mega ja megiston, vaid pakkus välja ka teise numbri. mezzanine, mis on (tema tähistuses) "ringiga 3".
  5. Nüüd numbrist lugematu arv või myrioi. Selle numbri päritolu kohta on erinevaid arvamusi. Mõned usuvad, et see pärineb Egiptusest, teised aga, et see sündis ainult Vana-Kreekas. Olgu kuidas on, tegelikult kogus müriaad kuulsust just tänu kreeklastele. Myriad oli 10 000 nimi ja üle kümne tuhande arvudele nimesid polnud. Märkuses "Psammit" (st liivaarvutus) näitas Archimedes aga, kuidas saab süstemaatiliselt ehitada ja nimetada meelevaldselt suuri arve. Täpsemalt, asetades mooniseemnesse 10 000 (lugematu) liivatera, leiab ta, et universumisse (pall, mille läbimõõt on lugematu arv Maa läbimõõtu) ei mahuks (meie tähistuses) rohkem kui 10 63 liivatera. . On uudishimulik, et tänapäevased arvutused nähtava universumi aatomite arvu kohta viivad numbrini 10 67 (ainult lugematu arv kordi rohkem). Archimedese pakutud numbrite nimed on järgmised:
    1 müriaad = 10 4 .
    1 di-müriaad = müriaad = 10 8 .
    1 tri-miriaad = di-miriaad di-miriaad = 10 16 .
    1 tetra-müriaad = kolm-müriaad kolm-müriaad = 10 32 .
    jne.

Kui on kommentaare -

Igapäevaelus tegutseb enamik inimesi üsna väikeste numbritega. Kümneid, sadu, tuhandeid, väga harva - miljoneid, peaaegu mitte kunagi - miljardeid. Ligikaudu sellised arvud piirduvad inimese tavapärase ettekujutusega koguse või suuruse kohta. Peaaegu kõik on triljonitest kuulnud, kuid vähesed on neid kunagi arvutustes kasutanud.

Mis on hiiglaslikud numbrid?

Vahepeal on tuhandet võimsust tähistavad numbrid inimestele teada juba pikka aega. Venemaal ja paljudes teistes riikides kasutatakse lihtsat ja loogilist märgistussüsteemi:

Tuhat;
miljoneid;
Miljard;
triljon;
kvadriljon;
kvintiljon;
Sextillion;
Septillion;
Octilion;
kvintiljon;
Decillion.

Selles süsteemis saadakse iga järgmine arv, korrutades eelmise tuhandega. Miljardit nimetatakse tavaliselt miljardiks.

Paljud täiskasvanud oskavad täpselt kirjutada selliseid numbreid nagu miljon - 1 000 000 ja miljard - 1 000 000 000. Triljoniga on juba keerulisem, kuid peaaegu kõik saavad sellega hakkama - 1 000 000 000 000. Ja siis algab paljudele tundmatu territoorium.

Suurte numbrite tundmaõppimine

Samas pole midagi keerulist, peaasi, et mõistaks suurte arvude moodustamise süsteemi ja nimetamise põhimõtet. Nagu juba mainitud, ületab iga järgmine number eelnevat tuhandekordselt. See tähendab, et järgmise numbri õigeks kirjutamiseks kasvavas järjekorras tuleb eelmisele lisada veel kolm nulli. See tähendab, et miljonil on 6 nulli, miljardil 9, triljonil 12, kvadriljonil 15 ja kvintiljonil 18.

Soovi korral saate tegeleda ka nimedega. Sõna "miljon" tuleb ladinakeelsest sõnast "mille", mis tähendab "rohkem kui tuhat". Järgmised arvud moodustati ladina sõnade "bi" (kaks), "kolm" (kolm), "quadro" (neli) jne lisamisel.

Proovime nüüd neid numbreid visuaalselt ette kujutada. Enamikul inimestel on tuhande ja miljoni erinevusest päris hea ettekujutus. Kõik saavad aru, et miljon rubla on hea, aga miljard on rohkem. Palju rohkem. Samuti on kõigil aimu, et triljon on midagi täiesti tohutut. Aga kui palju on triljon rohkem kui miljard? Kui suur see on?

Paljude jaoks, üle miljardi, algab mõiste "mõistus on arusaamatu". Tõepoolest, miljard kilomeetrit või triljon – vahe pole selles mõttes väga suur, et sellist vahemaad ikka elu jooksul läbida ei saa. Miljard rubla või triljon pole ka väga erinev, sest sellist raha ei saa te ikkagi elu jooksul teenida. Aga loeme natuke, ühendades fantaasia.

Näitena elamufond Venemaal ja neli jalgpalliväljakut

Iga inimese kohta maa peal on maa-ala mõõtmetega 100x200 meetrit. See on umbes neli jalgpalliväljakut. Aga kui inimesi pole mitte 7 miljardit, vaid seitse triljonit, siis saavad kõik ainult 4x5 meetrise maatüki. Neli jalgpalliväljakut sissepääsu ees asuva eesaia ala vastu - see on miljard ja triljon.

Absoluutarvudes on ka pilt muljetavaldav.

Kui võtta triljon tellist, saate ehitada rohkem kui 30 miljonit ühekorruselist maja, mille pindala on 100 ruutmeetrit. See on umbes 3 miljardit ruutmeetrit eraarendust. See on võrreldav kogu Vene Föderatsiooni elamufondiga.

Kui ehitate kümnekorruselisi maju, saate umbes 2,5 miljonit maja ehk 100 miljonit kahe-kolmetoalist korterit, umbes 7 miljardit ruutmeetrit elamispinda. See on 2,5 korda rohkem kui kogu Venemaa elamufond.

Ühesõnaga, kogu Venemaal ei tule triljonit tellist.

Üks kvadriljon õpilaste vihikut katab kahekordse kihiga kogu Venemaa territooriumi. Ja üks kvintiljon samu märkmikke katab kogu maa 40 sentimeetri paksuse kihiga. Kui teil õnnestub hankida sektiljon märkmikku, jääb kogu planeet, sealhulgas ookeanid, 100 meetri paksuse kihi alla.

Loendage kümnendikuni

Loendame veel. Näiteks tuhat korda suurendatud tikutops oleks kuueteistkorruselise maja suurune. Miljonikordne kasv annab "kasti", mis on pindalalt suurem kui Peterburi. Miljard korda suurendatuna ei mahu kastid meie planeedile ära. Vastupidi, Maa mahub sellisesse "kasti" 25 korda!

Kasti suurendamine suurendab selle mahtu. Selliseid mahtusid edasise kasvuga on peaaegu võimatu ette kujutada. Tajumise hõlbustamiseks proovime suurendada mitte objekti ennast, vaid selle kogust ja paigutada tikutoosid ruumi. See muudab navigeerimise lihtsamaks. Kvintiljon ühte ritta paigutatud kaste ulatuks tähest α Centauri 9 triljoni kilomeetri võrra kaugemale.

Veel üks tuhandekordne suurendus (sekstiljon) võimaldab rivistatud tikutoosidel blokeerida kogu meie Linnutee galaktika ristisuunas. Septiljon tikutoosi ulatuks 50 kvintiljoni kilomeetrini. Valgus suudab selle vahemaa läbida 5 260 000 aastaga. Ja kahes reas asetatud kastid ulatuksid Andromeeda galaktikasse.

Alles on jäänud vaid kolm numbrit: octillion, nonillion ja decillion. Peate oma kujutlusvõimet harjutama. Oktiljon kaste moodustab 50 sekstiljoni kilomeetri pikkuse pideva rea. See on üle viie miljardi valgusaasta. Mitte iga sellise objekti ühele servale paigaldatud teleskoop ei näe selle vastasserva.

Kas loeme edasi? Mittemiljon tikutoosi täidaks kogu inimkonnale teadaoleva universumi osa ruumi, mille keskmine tihedus on 6 tükki kuupmeetri kohta. Maiste standardite järgi ei tundu seda väga palju olevat – 36 tikutoosi tavalise Gazelli taga. Kuid mittemiljoni tikutoosi mass on miljardeid kordi suurem kui kõigi teadaoleva universumi materiaalsete objektide mass kokku.

Decillion. Selle numbrimaailma hiiglase suurusjärku ja pigem isegi majesteetlikkust on raske ette kujutada. Vaid üks näide – kuus detsillioni kasti ei mahuks enam ära kogu inimkonnale vaatluseks ligipääsetavasse universumi ossa.

Veelgi silmatorkavam on selle numbri majesteetlikkus näha siis, kui te ei korruta kastide arvu, vaid suurendate objekti ennast. Detsilljoni võrra suurendatud tikutoosi mahutaks kogu teadaoleva universumi osa 20 triljonit korda. Sellist asja on võimatu isegi ette kujutada.

Väikesed arvutused näitasid, kui suured on inimkonnale juba mitu sajandit teada olnud arvud. Kaasaegses matemaatikas on teada kümnendikust kordades suuremad arvud, kuid neid kasutatakse ainult keerulistes matemaatilistes arvutustes. Selliste arvudega peavad tegelema ainult professionaalsed matemaatikud.

Kõige kuulsam (ja väikseim) neist numbritest on googol, mida tähistatakse ühega, millele järgneb sada nulli. Googol on suurem kui elementaarosakeste koguarv universumi nähtavas osas. See muudab googoli abstraktseks numbriks, millel on vähe praktilist kasu.

On teada, et lõpmatu arv numbreid ja ainult vähestel on oma nimi, sest enamikule numbritele on antud väikestest numbritest koosnevad nimed. Suurimad numbrid tuleb kuidagi tähistada.

"Lühike" ja "pikk" skaala

Tänapäeval kasutatavad numbrinimed hakkasid saama viieteistkümnendal sajandil, siis itaallased kasutasid esmakordselt sõna miljon, mis tähendab "suurt tuhat", bimiljonit (miljoni ruudus) ja trimiljonit (miljoni kuubikut).

Seda süsteemi kirjeldas prantslane oma monograafias Nicholas Shuquet, ta soovitas kasutada ladina numbreid, lisades neile käände "-miljon", nii sai bimiljonist miljard ja kolmest miljonist triljon jne.

Kuid pakutud miljoni ja miljardi vahelise arvude süsteemi kohaselt nimetas ta "tuhat miljonit". Sellise gradatsiooniga ei olnud mugav töötada ja 1549. aastal prantslane Jacques Peletier Soovitatav on helistada numbritele, mis on määratud intervalliga, kasutades jällegi ladina eesliiteid, lisades samal ajal teise lõpu - "-miljard".

Nii nimetati 109 miljardiks, 1015 - piljard, 1021 - triljon.

Järk-järgult hakati seda süsteemi Euroopas kasutama. Kuid mõned teadlased ajasid numbrite nimed segamini, see tekitas paradoksi, kui sõnad miljard ja miljard muutusid sünonüümiks. Seejärel lõi Ameerika Ühendriigid suurte arvude jaoks oma nimede andmise kokkuleppe. Tema sõnul käib nimede konstrueerimine sarnaselt, kuid erinevad ainult numbrid.

Ühendkuningriigis jätkati vana süsteemi kasutamist ja seetõttu kutsuti seda Briti, kuigi selle lõid algselt prantslased. Kuid alates eelmise sajandi seitsmekümnendatest hakkas süsteemi rakendama ka Suurbritannia.

Seetõttu kutsutakse segaduse vältimiseks Ameerika teadlaste loodud kontseptsiooni tavaliselt nn lühike skaala, samas kui originaal Prantsuse-Briti - pikk skaala.

Lühiskaala on leidnud aktiivset kasutust USA-s, Kanadas, Suurbritannias, Kreekas, Rumeenias ja Brasiilias. Venemaal on see samuti kasutusel, ainult ühe erinevusega – numbrit 109 nimetatakse traditsiooniliselt miljardiks. Kuid paljudes teistes riikides eelistati prantsuse-briti versiooni.

Detsilljonist suuremate arvude tähistamiseks otsustasid teadlased kombineerida mitu ladina eesliidet, mistõttu nimetati undecillion, quattordecillion ja teised. Kui kasutate Schuecke süsteem, siis selle järgi omandavad hiigelnumbrid vastavalt nimed "vigintiljon", "sajandik" ja "miljon" (103003), pika skaala järgi saab selline arv nime "miljon" (106003).

Unikaalsete nimedega numbrid

Paljud numbrid nimetati ilma erinevatele süsteemidele ja sõnaosadele viitamata. Neid numbreid on palju, näiteks see Pi", kümmekond, samuti numbrid üle miljoni.

AT Vana-Venemaa on pikka aega kasutanud oma numbrisüsteemi. Sadu tuhandeid nimetati leegioniks, miljoneid leodromideks, kümneid miljoneid varesteks, sadu miljoneid tekkideks. See oli “väike konto”, aga “suur konto” kasutas samu sõnu, neile pandi vaid erinev tähendus, näiteks leodr võis tähendada leegioni leegioni (1024), tekk aga juba kümmet ronka. (1096).

Juhtus, et lapsed mõtlesid numbritele välja nimed, näiteks anti idee matemaatik Edward Kasner noor Milton Sirotta, kes tegi ettepaneku anda saja nulliga (10100) arvule nimi lihtsalt googol. See number pälvis enim avalikkust 20. sajandi üheksakümnendatel, mil tema järgi nimetati Google'i otsingumootor. Poiss pakkus välja ka nime "Googleplex", numbri, mille googol on null.

Kuid Claude Shannon arvutas 20. sajandi keskel malemängu käike hinnates, et neid on 10118, nüüd on see "Shannoni number".

Vanas budistlikus teoses "Jaina Sutras", mis on kirjutatud peaaegu kakskümmend kaks sajandit tagasi, on märgitud arv "asankheya" (10140), mis on täpselt see, mitu kosmilist tsüklit on budistide arvates vaja nirvaana saavutamiseks.

Stanley Skuse kirjeldas suuri koguseid, nii et "esimene Skewesi number", võrdne 10108.85.1033-ga ja "teine ​​Skewesi arv" on veelgi muljetavaldavam ja võrdub 1010101000-ga.

Märkused

Muidugi, sõltuvalt numbris sisalduvate kraadide arvust, muutub selle parandamine kirjutamise ja isegi lugemise veabaaside põhjal problemaatiliseks. mõned numbrid ei mahu mitmele lehele, nii et matemaatikud on suurte arvude tabamiseks välja mõelnud tähistused.

Tasub arvestada, et need kõik on erinevad, igaühel on oma fikseerimise põhimõte. Nende hulgas väärib mainimist märkused Steinghaus, Knuth.

Siiski kasutati suurimat numbrit, Grahami numbrit Ronald Graham 1977. aastal matemaatiliste arvutuste tegemisel ja see arv on G64.