Біографії Характеристики Аналіз

Онлайн калькулятор розкладання вектор базису. Розкладання вектора за базисом

Rn,
(МАТЕМАТИКА В ЕКОНОМІЦІ)
  • Розкладання вектора
    Розкладання вектора ана складові – операція заміни вектора адекількома іншими векторами а а2, а3 і т. д., які при їх додаванні утворюють початковий вектор а;у цьому випадку вектори db а2, а3 тощо називаються складовими вектора а.Іншими словами, розкладання будь-якого...
    (ФІЗИКА)
  • Базис та ранг системи векторів
    Розглянемо систему векторів (1.18) Максимально незалежною підсистемою системи векторів(1.I8) називається частковий набір векторів цієї системи, що відповідає двом умовам: 1) вектори цього набору лінійно незалежні; 2) будь-який вектор системи (1.18) лінійно виражається через вектори цього набору.
    (МАТЕМАТИКА В ЕКОНОМІЦІ)
  • Подання вектора в різних системахкоординат.
    Розглянемо дві ортогональні прямолінійні координатні системи з наборами ортів (i, j, k) та (i j", k") і представимо в них вектор a. Умовно приймемо, що орти зі штрихами відповідають нової системе координат, а без штрихів – старою. Представимо вектор у вигляді розкладання по осях як старої, так і нової систем.
  • Розкладання вектора в ортогональному базисі
    Розглянемо базис простору Rn,в якому кожен вектор ортогональний іншим векторам базису: Ортогональні базиси відомі і добре представлені на площині та просторі (рис. 1.6). Базиси такого виду зручні насамперед тим, що координати розкладання довільного вектора визначаються...
    (МАТЕМАТИКА В ЕКОНОМІЦІ)
  • Вектори та їх подання у координатних системах
    Поняття вектора пов'язується з певними фізичними величинами, які характеризуються своєю інтенсивністю (величиною) та напрямком у просторі. Такими величинами є, наприклад, сила, що діє матеріальне тіло, швидкість певної точкицього тіла, прискорення матеріальної частки.
    (МЕХАНІКА СУСПІЛЬНОГО СЕРЕДОВИЩА: ТЕОРІЯ НАПРУГ І ОСНОВНІ МОДЕЛІ)
  • Найпростіші аналітичні уявленнядовільної еліптичної функції
    Подання еліптичної функції як суми найпростіших елементів.Нехай / (z)є еліптична функція порядку s з простими полюсами jjt, $s,лежать у паралелограмі періодів. Позначаючи через Bkвідрахування функції щодо полюса маємо, що 2 ?л = 0 (§ 1»п. 3, теорема...
    (ВСТУП В ТЕОРІЮ ФУНКЦІЙ КОМПЛЕКСНОГО ЗМІННОГО)
  • Базисом просторуназивають таку систему векторів у якій інші вектори простору можна як лінійної комбінації векторів, які входять у базис.
    Насправді це все реалізується досить просто. Базис, як правило, перевіряють на площині або просторі, а для цього потрібно знайти визначник матриці другого, третього порядку складений з координат векторів. Нижче схематично записані умови, за яких вектори утворюють базис

    Щоб розкласти вектор b за базовими векторами
    e,e...,e[n] необхідно знайти коефіцієнти x, ..., x[n] при яких лінійна комбінація векторів e,e...,e[n] дорівнює вектору b:
    x1 * e + ... + x [n] * e [n] = b.

    Для цього векторне рівняння слід перетворити до системи лінійних рівнянь та знайти рішення. Це також досить просто реалізувати.
    Знайдені коефіцієнти x, ..., x[n] називаються координатами вектора b у базисі e, e ..., e [n].
    Перейдемо до практичного боку теми.

    Розкладання вектора за векторами базису

    Завдання 1. Перевірте, чи утворюють вектори a1, a2 базис на площині.

    1) a1 (3; 5), a2 (4; 2)
    Рішення: Складаємо визначник з координат векторів та обчислюємо його


    Визначник не дорівнює нулю, отже вектори лінійно незалежні, а отже утворюють базис.

    2) a1 (2; -3), a2 (5; -1)
    Рішення: Обчислюємо детермінант складений із векторів

    Визначник дорівнює 13 (не дорівнює нулю) - з цього випливає, що вектори a1, a2 є базисом на площині.

    ---=================---

    Розглянемо типові прикладиіз програми МАУП з дисципліни "Вища математика".

    Завдання 2. Показати, що вектори a1, a2, a3 утворюють базис тривимірного векторного простору і розкласти вектор b по цьому базису (при вирішенні системи лінійних алгебраїчних рівняньвикористовувати метод Крамера).
    1) a1 (3; 1; 5), a2 (3; 2; 8), a3 (0; 1; 2), b (-3; 1; 2).
    Рішення: Спочатку розглянемо систему векторів a1, a2, a3 та перевіримо визначник матриці А

    побудованої на векторах, відмінних від нуля. Матриця містить один нульовий елемент, тому детермінант доцільніше обчислювати як розклад по першому стовпцю або третьому рядку.

    У результаті обчислень отримали що визначник відмінний від нуля, отже вектори a1, a2, a3 лінійно незалежні.
    Відповідно до визначення вектори утворюють базис у R3. Запишемо розклад вектора b за базисом

    Вектори рівні, коли відповідні координати рівні.
    Тому з векторного рівняння отримаємо систему лінійних рівнянь

    Вирішимо СЛАУ методом Крамера. Для цього запишемо систему рівнянь у вигляді

    Головний визначник СЛАУ завжди дорівнює визначнику, складеному з векторів базису.

    Тому практично його не обчислюють двічі. Для знаходження допоміжних визначників ставимо стовпець вільних членів місце кожного стовпця головного визначника. Визначники обчислюємо за правилом трикутників



    Підставимо знайдені визначники у формулу Крамера



    Отже, розкладання вектора b за базисом має вигляд b = -4a1 + 3a2-a3. Координатами вектора b у базисі a1, a2, a3 будуть (-4,3, 1).

    2)a1 (1; -5; 2), a2 (2; 3; 0), a3 (1; -1; 1), b (3; 5; 1).
    Рішення: Перевіряємо вектори на базис - складаємо визначник координат векторів і обчислюємо його

    Визначник не дорівнює нулю, отже вектори утворюють базис у просторі. Залишилося знайти розклад вектора b через цей базис. Для цього записуємо векторне рівняння

    та перетворимо до системи лінійних рівнянь

    Записуємо матричне рівняння

    Далі для формул Крамера знаходимо допоміжні визначники



    Застосовуємо формули Крамера



    Отже заданий вектор b має розклад через два вектори базису b=-2a1+5a3, яке координати в базисі рівні b(-2,0, 5).

    Базіс(інш.-грец. βασις, основа) - безліч таких векторів у векторному просторі, що будь-який вектор цього простору може бути єдиним чином представлений у вигляді лінійної комбінації векторів з цієї множини - базисних векторів

    Базисом у просторі R n називається будь-яка система з n-лінійно незалежні вектори. Кожен вектор з R n , які не входять у базис, можна як лінійної комбінації базисних векторів, тобто. розкласти за базисом.
    Нехай базис простору R n і . Тоді знайдуться такі числа λ1, λ2, …, λn, що .
    Коефіцієнти розкладання λ 1 , λ 2 , …, λ n називаються координатами вектора в базисі В. Якщо заданий базис, то коефіцієнти вектора визначаються однозначно.

    Зауваження. В кожному n-вимірному векторному просторі можна вибрати безлічрізних базисів. У різних базисах той самий вектор має різні координати, але єдині у вибраному базисі. приклад.Розкласти вектор по базису.
    Рішення. . Підставимо координати всіх векторів та виконаємо дії над ними:

    Прирівнявши координати, отримаємо систему рівнянь:

    Вирішимо її: .
    Таким чином, отримаємо розкладання: .
    У базисі вектор має координати.

    Кінець роботи -

    Ця тема належить розділу:

    Концепція вектор. Лінійні операції над векторами

    Вектором називається спрямований відрізок має певну довжину т відрізок певної довжиниу якого одна з обмежують його точок.. довжина вектора називається його модулем і позначається символом модуль вектора.

    Якщо вам потрібно додатковий матеріална цю тему, або Ви не знайшли те, що шукали, рекомендуємо скористатися пошуком по нашій базі робіт:

    Що робитимемо з отриманим матеріалом:

    Якщо цей матеріал виявився корисним для Вас, Ви можете зберегти його на свою сторінку в соціальних мережах:

    Л. 2-1 Основні поняття векторної алгебри. Лінійні операції над векторами.

    Розкладання вектора за базисом.

    Основні поняття векторної алгебри

    Вектор називається безліч всіх спрямованих відрізків, що мають однакову довжинута напрямок
    .


    Властивості:


    Лінійні операціїнад векторами

    1.

    Правило паралелограма:

    З уммойдвох векторів і називається вектор , що виходить із їх загального початку і є діагоналлю паралелограм-ма, побудованого на векторах і як на сторонах.

    Правило багатокутника:

    Щоб побудувати суму будь-якого числа векторів, потрібно в кінець 1-го доданку вектора помістити початок 2-го, на кінець 2-го - початок 3-го і т.д. Вектор, що замикає отриману ламану лініює сумою. Початок його збігається з початком першого, а кінець - з кінцем останнього.

    Властивості:


    2.

    Добутком вектора на число , називається вектор, що задовольняє умовам:
    .

    Властивості:


    3.

    Різницявекторів і називають вектор , рівний сумі вектора та вектора, протилежного вектору , тобто.
    .

    - Закон протилежного елемента (вектора).

    Розкладання вектора за базисом

    Сума векторів визначається єдиним способом
    (і тільки ). Зворотна операція – розкладання вектора на кілька складових, неоднозначна:. Для того, щоб зробити її однозначною, необхідно вказати напрямки, за якими відбувається розкладання вектора, що розглядається, або, як кажуть, необхідно вказати базис.


    При визначенні базису суттєвою є вимога некомпланарності та неколлінеарності векторів. Щоб зрозуміти зміст цієї вимоги, необхідно розглянути поняття лінійної залежності та лінійної незалежності векторів.

    Довільне вираз виду: , називають лінійною комбінацієювекторів
    .

    Лінійна комбінація кількох векторів називається тривіальною, Якщо всі її коефіцієнти дорівнюють нулю.

    Вектори
    називаються лінійно залежнимиякщо існує нетривіальна лінійна комбінація цих векторів дорівнює нулю:
    (1), за умови
    . Якщо рівність (1) має місце лише за всіх
    одночасно рівних нулю, то ненульові вектори
    будуть лінійно незалежними.

    Легко довести: будь-які два колінеарні вектори лінійно залежні, а два неколінеарні вектори лінійно незалежні.

    Доказ розпочнемо з першого затвердження.

    Нехай вектори і колінеарні. Покажемо, що вони є лінійно залежними. Дійсно, якщо вони колінеарні, то вони відрізняються один від одного тільки на числовий множник, тобто.
    , отже
    . Оскільки отримана лінійна комбінація явно нетривіальна і дорівнює «0», вектори і лінійно залежні.

    Розглянемо тепер два неколлінеарні вектори і . Доведемо, що вони є лінійно незалежними. Доказ збудуємо від протилежного.

    Припустимо, що вони лінійно залежні. Тоді має існувати нетривіальна лінійна комбінація
    . Припустимо, що
    тоді
    . Отримана рівність означає, що вектори і колінеарні всупереч нашому вихідному припущенню.

    Аналогічно можна довести: будь-які три компланарні вектори лінійно залежні, а два некомпланарні вектори лінійно незалежні.

    Повертаючись до поняття базису і завдання розкладання вектора в певному базисі, можна сказати, що базис на площині та у просторі утворюється із сукупності лінійно незалежних векторів.Таке поняття базису є загальним, т.к. воно застосовується до простору будь-якого числа вимірів.

    Вираз виду:
    , називається розкладанням вектора за векторами ,…,.

    Якщо ми розглядатимемо базис у тривимірному просторі, то розкладання вектора по базису
    буде
    , де
    -координати вектора.

    У задачі розкладання довільного вектора в деякому базисі дуже важливим є таке твердження: будь-який векторможе бути єдиним чином розкладений у даному базисі
    .
    Іншими словами, координати
    для будь-якого вектора щодо базису
    визначається однозначно.

    Введення базису у просторі та на площині дозволяє поставити у відповідність кожному вектору упорядковану трійку (пару) чисел – його координати. Цей дуже важливий результат, що дозволяє встановити зв'язок між геометричними об'єктами та числами, робить можливим аналітично описувати та досліджувати положення та рух фізичних об'єктів.

    Сукупність точки та базису називають системою координат.

    Якщо вектори, що утворюють базис, поодинокі і попарно перпендикулярні, то система координат називається прямокутної,а базис ортонормованим.

    Л. 2-2 Твір векторів

    Розкладання вектора за базисом

    Розглянемо вектор
    , Заданий своїми координатами:
    .



    - Векторні компоненти за напрямами базисних векторів
    .

    Вираз виду
    називається розкладанням вектора по базису
    .

    Аналогічним чином можна розкласти по базису
    вектор
    :

    .

    Косинуси кутів, утворені аналізованим вектором з базисними ортами
    називаються напрямними косинусами

    ;
    ;
    .

    Скалярський витвір векторів.

    Скалярним твором двох векторів і називається число, що дорівнює добутку модулів цих векторів на косинус кута між ними.

    Скалярний добуток двох векторів можна розглядати як добуток модуля одного з цих векторів на ортогональну проекцію іншого вектора на напрямок першого
    .

    Властивості:


    Якщо відомі координати векторів
    і
    , то, виконавши розкладання векторів по базису
    :

    і
    , знайдемо

    , т.к.
    ,
    , то

    .

    .

    Умови перпендикулярності векторів:
    .

    Умова колінеарності ректорів:
    .

    Векторний твір векторів

    або

    Векторні твори вектор на вектор називається такий вектор
    , який задовольняє умовам:


    Властивості:


    Розглянуті властивості алгебри дозволяють знайти аналітичний вираз для векторного твору через координати складових векторів в ортонормованому базисі.

    Дано:
    і
    .

    т.к. ,
    ,
    ,
    ,
    ,
    ,
    , то


    . Цю формулу можна записати коротше, у формі визначника третього порядку:

    .

    Змішаний твір векторів

    Змішаним твором трьох векторів ,і називається число, що дорівнює векторному твору
    , помноженому скалярно на вектор .

    Правильно така рівність:
    тому змішаний твір записують
    .

    Як випливає з визначення, результатом змішаного твору трьох векторівє число. Це число має наочний геометричний зміст:

    Модуль змішаного твору
    дорівнює обсягу паралелепіпеда, побудованого на приведених до спільному початкувекторах ,і .

    Властивості змішаного твору:

    Якщо вектори ,,задані в ортонормованому базисі
    своїми координатами, обчислення змішаного твору здійснюється за формулою

    .

    Справді, якщо
    , то

    ;
    ;
    тоді
    .

    Якщо вектори ,,компланарні, то векторний твір
    перпендикулярно вектору . І навпаки, якщо
    , то обсяг паралелепіпеда дорівнює нулю, а це можливо тільки в тому випадку, коли вектори є компланарними (лінійно залежними).

    Таким чином, три вектори компланарні, тоді і тільки тоді, коли їхнє змішане твір дорівнює нулю.

    Лінійна залежністьі лінійна незалежністьвекторів.
    Векторні бази. Афінна система координат

    В аудиторії знаходиться візок із шоколадками, і кожному відвідувачу сьогодні дістанеться солодка парочка – аналітична геометрія з лінійною алгеброю. У цій статті будуть порушені відразу два розділи вищої математики, і ми подивимося, як вони вживаються в одній обгортці. Зроби паузу, з'їж «Твікс»! …млинець, ну і нісенітниця суперечок. Хоча гаразд, забивати не буду, зрештою, на навчання має бути позитивний настрій.

    Лінійна залежність векторів, лінійна незалежність векторів, базис векторівта ін терміни мають не тільки геометричну інтерпретацію, але, перш за все, алгебраїчний сенс. Саме поняття «вектор» з погляду лінійної алгебри – це далеко не завжди той «звичайний» вектор, який ми можемо зобразити на площині чи просторі. За доказом далеко не треба ходити, спробуйте намалювати вектор п'ятивимірного простору. . Або вектор погоди, за яким я щойно сходив на Гісметео: – температура та атмосферний тисквідповідно. Приклад, звичайно, некоректний з точки зору властивостей векторного простору, проте ніхто не забороняє формалізувати дані параметри вектором. Дихання осені.

    Ні, я не збираюся вантажити вас теорією, лінійними векторними просторами, завдання полягає в тому, щоб зрозумітивизначення та теореми. Нові терміни (лінійна залежність, незалежність, лінійна комбінація, базис і т.д.) придатні до всіх векторів з точки зору алгебри , але приклади будуть дані геометричні. Таким чином, все просто, доступно та наочно. Крім завдань аналітичної геометрії ми розглянемо деякі типові завданняалгебри. Для освоєння матеріалу бажано ознайомитись з уроками Вектори для чайниківі Як визначити обчислювач?

    Лінійна залежність та незалежність векторів площини.
    Базис площини та афінна система координат

    Розглянемо площину комп'ютерного столу (просто столу, тумбочки, підлоги, стелі, кому що подобається). Завдання полягатиме в наступних діях:

    1) Вибрати базис площини. Грубо кажучи, стільниця має довжину і ширину, тому інтуїтивно зрозуміло, що для побудови базису потрібно два вектори. Одного вектора явно мало, три вектори – зайва.

    2) На основі обраного базису встановити систему координат(координатну сітку), щоб присвоїти координати всім предметам, що знаходяться на столі.

    Не дивуйтесь, спочатку пояснення будуть на пальцях. Причому на ваших. Будь ласка, помістіть вказівний палець лівої рукина край стільниці так, щоб він дивився на монітор. Це буде вектор. Тепер помістіть мізинець правої руки на край столу так само - щоб він був спрямований на екран монітора. Це буде вектор. Усміхніться, ви чудово виглядаєте! Що можна сказати про вектори? Дані вектори колінеарні, а значить, лінійновиражаються один через одного:
    , ну, чи навпаки: , де – деяке число, відмінне від нуля.

    Картинку цього дійства можна переглянути на уроці Вектори для чайниківде я пояснював правило множення вектора на число.

    Чи будуть ваші пальчики задавати базис на площині комп'ютерного столу? Очевидно, що ні. Колінеарні вектори подорожують туди-сюди одномунапрямку, а площина має довжину і ширину.

    Такі вектори називають лінійно залежними.

    Довідка: Слова «лінійний», «лінійно» позначають той факт, що в математичних рівняннях, виразів немає квадратів, кубів, інших ступенів, логарифмів, синусів і т.д. Є тільки лінійні (1-го ступеня) вирази та залежності.

    Два векторні площині лінійно залежнітоді і тільки тоді, коли вони колінеарні.

    Схрестіть пальці на столі, щоб між ними був будь-який кут крім 0 або 180 градусів. Два векторні площинілінійно незалежні в тому і лише тому випадку, якщо вони не колінеарні. Отже, базис отримано. Не треба бентежитись, що базис вийшов «косим» з неперпендикулярними векторами різної довжини. Незабаром ми побачимо, що для його побудови придатний не тільки кут 90 градусів, і не тільки одиничні, рівні за довжиною вектори.

    Будь-якийвектор площині єдиним чиномрозкладається по базису:
    , де - дійсні числа. Числа називають координатами векторау цьому базисі.

    Також кажуть, що векторпредставлений у вигляді лінійної комбінаціїбазисних векторів. Тобто вираз називають розкладання векторапо базисуабо лінійною комбінацієюбазових векторів.

    Наприклад, можна сказати, що вектор розкладений за ортонормованим базисом площини, а можна сказати, що він представлений у вигляді лінійної комбінації векторів.

    Сформулюємо визначення базисуформально: Базисом площининазивається пара лінійно незалежних (неколлінеарних) векторів, , при цьому будь-якийВектор площини є лінійною комбінацією базисних векторів.

    Істотним моментом визначення є той факт, що вектори взяті у певному порядку. Базиси – це два абсолютно різні базиси! Як то кажуть, мізинець лівої руки не переставиш на місце мізинця правої руки.

    З базисом розібралися, але його недостатньо, щоб задати координатну сітку та присвоїти координати кожному предмету вашого комп'ютерного столу. Чому замало? Вектори є вільними та блукають по всій площині. То як привласнити координати тим маленьким брудним точкам столу, які залишилися після бурхливих вихідних? Необхідний відправний орієнтир. І таким орієнтиром є знайома всім точка – початок координат. Розбираємось із системою координат:

    Почну зі «шкільної» організації. Вже на вступному уроці Вектори для чайниківя виділяв деякі відмінності між прямокутною системою координат та ортонормованим базисом. Ось стандартна картина:

    Коли говорять про прямокутної системи координат, то найчастіше мають на увазі початок координат, координатні осіта масштаб по осях. Спробуйте набрати в пошуковій системі «прямокутна система координат», і ви побачите, що багато джерел вам розповідатимуть про знайомі з 5-6-го класу координатні осі і про те, як відкладати точки на площині.

    З іншого боку, складається враження, що прямокутну системукоординат цілком можна визначити через ортонормований базис. І це майже так. Формулювання звучить так:

    початком координат, і ортонормованийбазис задають декартову прямокутну систему координат площини . Тобто прямокутна система координат однозначновизначається єдиною точкою та двома одиничними ортогональними векторами. Саме тому ви бачите креслення, яке я привів вище – в геометричних задачахчасто (але не завжди) малюють і вектори, і координатні осі.

    Думаю, всім зрозуміло, що за допомогою точки (початку координат) та ортонормованого базису БУДЬ-ЯКІЙ ТОЧЦІ площині і БУДЬ-ЯКОМУ ВЕКТОРУ площиніможна присвоїти координати. Образно кажучи, "на площині все можна пронумерувати".

    Чи мають координатні вектори бути одиничними? Ні, вони можуть мати довільну ненульову довжину. Розглянемо точку та два ортогональні вектори довільної ненульової довжини:


    Такий базис називається ортогональним. Початок координат з векторами задають координатну сітку, і будь-яка точка площини будь-який вектор мають свої координати в даному базисі. Наприклад, або . Очевидна незручність полягає в тому, що координатні вектори в загальному випадку мають різні довжини, відмінні від одиниці. Якщо довжини дорівнюють одиниці, то виходить звичний ортонормований базис.

    ! Примітка : в ортогональному базисі, а також нижче афінних базисахплощини та простору одиниці по осях вважаються УМОВИМИ. Наприклад, в одній одиниці по осі абсцис міститься 4 см, в одній одиниці по осі ординат 2 см. Даної інформації достатньо, щоб при необхідності перевести «нестандартні» координати «наші звичайні сантиметри».

    І друге питання, на яке вже насправді дана відповідь – чи обов'язково кут між базисними векторами має дорівнювати 90 градусам? Ні! Як свідчить визначення, базові вектори повинні бути лише неколінеарними. Відповідно кут може бути будь-яким, крім 0 та 180 градусів.

    Точка площини, яка називається початком координат, і неколінеарнівектори , , задають афінну систему координат площини :


    Іноді таку систему координат називають косокутноїсистемою. Як приклади на кресленні зображені точки та вектори:

    Як розумієте, афінна система координат ще менш зручна, у ній не працюють формули довжин векторів та відрізків, які ми розглядали у другій частині уроку Вектори для чайників, багато смачні формули, пов'язані з скалярним твором векторів. Зате справедливі правила складання векторів і множення вектора на число, формули поділу відрізка в даному відношенні, а також деякі типи завдань, які ми швидко розглянемо.

    А висновок такий, що найзручнішим окремим випадком афінної системикоординат є декартова прямокутна система. Тому її, рідну, найчастіше і доводиться бачити. …Втім, все в цьому житті відносно – існує чимало ситуацій, в яких доречна саме косокутна (або якась інша, наприклад, полярна) система координат. Та й гуманоїдам такі системи можуть прийтись до смаку =)

    Переходимо до практичної частини. Усі завдання даного урокусправедливі як прямокутної системи координат, так загального афінного випадку. Складного тут немає, весь матеріал доступний навіть школяру.

    Як визначити колінеарність векторів площини?

    Типова річ. Для того, щоб два вектори площині були колінеарні, необхідно і достатньо, щоб їхні відповідні координати були пропорційними. Фактично, це покоординатная деталізація очевидного співвідношення .

    Приклад 1

    а) Перевірити, чи колінеарні вектори .
    б) Чи утворюють базис вектори ?

    Рішення:
    а) З'ясуємо, чи існує для векторів коефіцієнт пропорційності, такий, щоб виконувались рівності:

    Обов'язково розповім про «піжонський» різновид застосування цього правила, який цілком прокочує на практиці. Ідея полягає в тому, щоб одразу скласти пропорцію і подивитися, чи буде вона вірною:

    Складемо пропорцію із відносин відповідних координат векторів:

    Скорочуємо:
    , таким чином, відповідні координати пропорційні, отже,

    Ставлення можна було скласти і навпаки, це рівноцінний варіант:

    Для самоперевірки можна використовувати ту обставину, що колінеарні векторилінійно виражаються один через одного. У даному випадкумають місце рівності . Їхня справедливість легко перевіряється через елементарні дії з векторами:

    б) Два вектори площини утворюють базис, якщо вони колінеарні (лінійно незалежні). Досліджуємо на колінеарність вектори . Складемо систему:

    З першого рівняння випливає, що , з другого рівняння випливає, що , отже, система несумісна(Рішень немає). Таким чином, відповідні координати векторів не є пропорційними.

    Висновок: вектори лінійно незалежні та утворюють базис.

    Спрощена версія рішення виглядає так:

    Складемо пропорцію з відповідних координат векторів :
    , Отже, ці вектори лінійно незалежні і утворюють базис.

    Зазвичай такий варіант бракують рецензенти, але виникає проблема у випадках, коли деякі координати дорівнюють нулю. Ось так: . Або так: . Або так: . Як тут діяти через пропорцію? (Справді, на нуль ж ділити не можна). Саме з цієї причини я назвав спрощене рішення «піжонським».

    Відповідь:а), б) утворюють.

    Невеликий творчий прикладдля самостійного рішення:

    Приклад 2

    При якому значенні параметра вектори будуть колінеарні?

    У зразку рішення параметр знайдено через пропорцію.

    Існує витончений метод алгебри перевірки векторів на колінеарність., систематизуємо наші знання і п'ятим пунктом якраз додамо його:

    Для двох векторів площини еквівалентні наступні твердження:

    2) вектори утворюють базис;
    3) вектори не колінеарні;

    + 5) визначник, складений координат даних векторів, відмінний від нуля.

    Відповідно, еквівалентні наступні протилежні твердження:
    1) вектори лінійно залежні;
    2) вектори не утворюють базис;
    3) вектори колінеарні;
    4) вектори можна лінійно виразити один через одного;
    + 5) визначник, складений з координат даних векторів, дорівнює нулю.

    Я дуже і дуже сподіваюся, що на даний момент вам вже зрозумілі всі терміни і твердження, що зустрілися.

    Розглянемо докладніше новий, п'ятий пункт: два вектори площині колінеарні тоді і тільки тоді, коли визначник, складений з координат даних векторів, дорівнює нулю:. Для застосування цієї ознаки, природно, потрібно вміти знаходити визначники.

    ВирішимоПриклад 1 другим способом:

    а) Обчислимо визначник, складений координат векторів :
    , отже, ці вектори колінеарні.

    б) Два вектори площини утворюють базис, якщо вони колінеарні (лінійно незалежні). Обчислимо визначник, складений координат векторів :
    , Отже, вектори лінійно незалежні і утворюють базис.

    Відповідь:а), б) утворюють.

    Виглядає значно компактніше та симпатичніше, ніж рішення з пропорціями.

    З допомогою розглянутого матеріалу можна встановлювати як колінеарність векторів, а й доводити паралельність відрізків, прямих. Розглянемо пару завдань із конкретними геометричними фігурами.

    Приклад 3

    Дано вершини чотирикутника. Довести, що чотирикутник є паралелограмом.

    Доведення: Креслення в задачі будувати не потрібно, оскільки рішення буде чисто аналітичним Згадуємо визначення паралелограма:
    Паралелограмом називається чотирикутник, у якого протилежні сторони попарно паралельні.

    Таким чином, необхідно довести:
    1) паралельність протилежних сторін та ;
    2) паралельність протилежних сторін та .

    Доводимо:

    1) Знайдемо вектори:


    2) Знайдемо вектори:

    Вийшов той самий вектор («по шкільному» – рівні вектори). Колінеарність дуже очевидна, але рішення таки краще оформити з толком, з розстановкою. Обчислимо визначник, складений координат векторів :
    , Отже, ці вектори колінеарні, і .

    Висновок: Протилежні сторониЧотирикутники попарно паралельні, отже, він є паралелограмом за визначенням. Що і потрібно було довести.

    Більше фігур хороших та різних:

    Приклад 4

    Дано вершини чотирикутника. Довести, що чотирикутник є трапецією.

    Для суворішого формулювання докази краще, звичайно, роздобути визначення трапеції, але досить і просто згадати, як вона виглядає.

    Це завдання самостійного рішення. Повне рішеннянаприкінці уроку.

    А тепер настав час потихеньку перебиратися з площини в простір:

    Як визначити колінеарність векторів простору?

    Правило дуже схоже. Для того щоб два вектори простору були колінеарними, необхідно і достатньо, щоб їх відповідні координати були пропорційними.

    Приклад 5

    З'ясувати, чи колінеарні будуть наступні вектори простору:

    а);
    б)
    в)

    Рішення:
    а) Перевіримо, чи є коефіцієнт пропорційності для відповідних координат векторів:

    Система не має рішення, отже вектори не колінеарні.

    «Спрощенка» оформляється перевіркою пропорції. В даному випадку:
    – відповідні координати не пропорційні, отже вектори не колінеарні.

    Відповідь:вектори не колінеарні.

    б-в) Це пункти самостійного рішення. Спробуйте оформити його двома способами.

    Існує метод перевірки просторових векторів на колінеарність та через визначник третього порядку, даний спосібосвітлений у статті Векторний твір векторів.

    Аналогічно плоскому випадку розглянутий інструментарій може застосовуватися з метою дослідження паралельності просторових відрізків і прямих.

    Ласкаво просимо до другого розділу:

    Лінійна залежність та незалежність векторів тривимірного простору.
    Просторовий базис та афінна система координат

    Багато закономірностей, які ми розглянули на площині, будуть справедливими і простору. Я постарався мінімізувати конспект з теорії, оскільки левова частка інформації вже розжована. Тим не менш, рекомендую уважно прочитати вступну частину, оскільки з'являться нові терміни та поняття.

    Тепер замість площини комп'ютерного столу досліджуємо тривимірний простір. Спочатку створимо його базис. Хтось зараз знаходиться в приміщенні, хтось на вулиці, але в будь-якому разі нам нікуди не подітися від трьох вимірів: ширини, довжини та висоти. Тому для побудови базису потрібно три просторові вектори. Одного-двох векторів мало, четвертий – зайвий.

    І знову розминаємось на пальцях. Будь ласка, підніміть руку вгору і розчепірте в різні сторони великий, вказівний та середній палець. Це будуть вектори, вони дивляться у різні боки, мають різну довжину та мають різні кути між собою. Вітаю, базис тривимірного простору готовий! До речі, не потрібно демонструвати таке викладачам, як не крути пальцями, а від визначень нікуди не подітися =)

    Далі поставимо важливим питанням, будь-які три вектори утворюють базис тривимірного простору ? Будь ласка, щільно притисніть три пальці до стільниці комп'ютерного столу. Що сталося? Три вектори розташувалися в одній площині, і, грубо кажучи, у нас зник один із вимірів – висота. Такі вектори є компланарнимиі цілком очевидно, що базису тривимірного простору не створюють.

    Слід зазначити, що компланарні вектори нічого не винні лежати у одній площині, можуть перебувати у паралельних площинах(Тільки не робіть цього з пальцями, так відривався тільки Сальвадор Далі =)).

    Визначення: вектори називаються компланарнимиякщо існує площина, якою вони паралельні. Тут логічно додати, що якщо такої площини не існує, то вектори будуть не компланарні.

    Три компланарні вектори завжди лінійно залежнітобто лінійно виражаються один через одного. Для простоти знову припустимо, що вони лежать в одній площині. По-перше, вектори мало того, що компланарні, можуть бути ще колінеарні, тоді будь-який вектор можна виразити через будь-який вектор. У другому випадку, якщо, наприклад, вектори не колінеарні, то третій вектор виражається через них єдиним чином: (а чому легко здогадатися за матеріалами попереднього розділу).

    Справедливе та зворотне твердження: три некомпланарні вектори завжди лінійно незалежні, тобто аж ніяк не виражаються один через одного. І, очевидно, лише такі вектори можуть утворити базис тривимірного простору.

    Визначення: Базисом тривимірного просторуназивається трійка лінійно незалежних (некомпланарних) векторів, взятих у певному порядкупри цьому будь-який вектор простору єдиним чиномрозкладається по даному базису , де координати вектора в даному базисі

    Нагадую, також можна сказати, що вектор представлений у вигляді лінійної комбінаціїбазових векторів.

    Поняття системи координат вводиться так само, як і для плоского випадку, достатньо однієї точки та будь-яких трьох лінійно незалежних векторів:

    початком координат, і некомпланарнівектори , взяті у певному порядку, задають афінну систему координат тривимірного простору :

    Звичайно, координатна сітка «коса» і малозручна, але побудована система координат дозволяє нам однозначновизначити координати будь-якого вектора та координати будь-якої точки простору. Аналогічно площині, в афінній системі координат простору не працюватимуть деякі формули, про які я вже згадував.

    Найбільш звичним і зручним окремим випадком афінної системи координат є прямокутна система координат простору:

    Точка простору, яка називається початком координат, і ортонормованийбазис задають декартову прямокутну систему координат простору . Знайоме зображення:

    Перед тим, як перейти до практичних завдань, знову систематизуємо інформацію:

    Для трьох векторів простору еквівалентні такі твердження:
    1) вектори лінійно незалежні;
    2) вектори утворюють базис;
    3) вектори не компланарні;
    4) вектори не можна лінійно виразити один через одного;
    5) визначник, складений координат даних векторів, відмінний від нуля.

    Протилежні висловлювання, гадаю, зрозумілі.

    Лінійна залежність/незалежність векторів простору традиційно перевіряється за допомогою визначника (пункт 5). Ті, що залишилися практичні завданняноситимуть яскраво виражений алгебраїчний характер. Пора повісити на цвях геометричну ключку і орудувати бейсбольною битою лінійною алгебри:

    Три векторні просторукомпланарні тоді і тільки тоді, коли визначник, складений координат даних векторів, дорівнює нулю : .

    Звертаю увагу на невеликий технічний нюанс: координати векторів можна записувати не тільки у стовпці, а й у рядки (значення визначника від цього не зміниться – див. властивості визначників). Але набагато краще у стовпці, оскільки це вигідніше для вирішення деяких практичних завдань.

    Тим читачам, які трошки забули методи розрахунку визначників, а може і взагалі слабо в них орієнтуються, рекомендую один із моїх найстаріших уроків: Як визначити обчислювач?

    Приклад 6

    Перевірити, чи утворюють базис тривимірного простору такі вектори:

    Рішення: Фактично все рішення зводиться до обчислення визначника

    а) Обчислимо визначник, складений із координат векторів (визначник розкритий по першому рядку):

    , Отже, вектори лінійно незалежні (не компланарні) і утворюють базис тривимірного простору.

    Відповідь: дані вектори утворюють базис

    б) Це пункт самостійного рішення. Повне рішення та відповідь наприкінці уроку.

    Зустрічаються і творчі завдання:

    Приклад 7

    За якого значення параметра вектори будуть компланарні?

    Рішення: Вектори компланарні тоді і тільки тоді, коли визначник, складений координат даних векторів дорівнює нулю:

    Фактично, потрібно вирішити рівняння з визначником. Налітаємо на нулі як шуліки на тушканчиків - визначник найвигідніше розкрити по другому рядку і відразу ж позбутися мінусів:

    Проводимо подальші спрощення та зводимо справу до найпростішого лінійному рівнянню:

    Відповідь: при

    Тут легко виконати перевірку, для цього потрібно підставити отримане значення у вихідний визначник та переконатися, що , розкривши його наново.

    На закінчення розглянемо ще одну типове завдання, Що носить більше алгебраїчний характер і традиційно включається до курсу лінійної алгебри. Вона настільки поширена, що заслуговує на окремий топік:

    Довести, що 3 вектори утворюють базис тривимірного простору
    та знайти координати 4-го вектора в даному базисі

    Приклад 8

    Дано вектори. Показати, що вектори утворюють базис тривимірного простору та знайти координати вектора у цьому базисі.

    Рішення: Спочатку розбираємось з умовою За умовою дано чотири вектори, і, як бачите, вони вже мають координати в деякому базисі. Який це базис – нас не цікавить. А цікавить така річ: три вектори цілком можуть утворювати новий базис. І перший етап повністю збігається з рішенням Прикладу 6, необхідно перевірити, чи вектори справді лінійно незалежні:

    Обчислимо визначник, складений координат векторів :

    , Отже, вектори лінійно незалежні і утворюють базис тривимірного простору.

    ! Важливо : координати векторів обов'язковозаписуємо у стовпцівизначника, а не в рядки. Інакше буде плутанина у подальшому алгоритмі розв'язання.