Biografije Tehnički podaci Analiza

Nađite a1 aritmetičku progresiju. Aritmetička progresija


Na primjer, niz \(2\); \(pet\); \(osam\); \(jedanaest\); \(14\)… je aritmetička progresija, jer se svaki sljedeći element razlikuje od prethodnog za tri (može se dobiti od prethodnog zbrajanjem tri):

U ovoj progresiji razlika \(d\) je pozitivna (jednaka \(3\)), pa je stoga svaki sljedeći član veći od prethodnog. Takve progresije nazivaju se povećavajući se.

Međutim, \(d\) također može biti negativan broj. Na primjer, u aritmetičkoj progresiji \(16\); \(10\); \(4\); \(-2\); \(-8\)… progresijska razlika \(d\) jednaka je minus šest.

I u ovom slučaju, svaki sljedeći element bit će manji od prethodnog. Ove progresije se nazivaju smanjujući se.

Zapis aritmetičke progresije

Progresija se označava malim latiničnim slovom.

Brojevi koji čine progresiju se nazivaju članova(ili elementi).

Označavaju se istim slovom kao i aritmetička progresija, ali s numeričkim indeksom jednakim broju elementa po redu.

Na primjer, aritmetička progresija \(a_n = \lijevo\( 2; 5; 8; 11; 14…\desno\)\) sastoji se od elemenata \(a_1=2\); \(a_2=5\); \(a_3=8\) i tako dalje.

Drugim riječima, za progresiju \(a_n = \lijevo\(2; 5; 8; 11; 14…\desno\)\)

Rješavanje zadataka aritmetičkom progresijom

U principu, gore navedene informacije već su dovoljne za rješavanje gotovo bilo kojeg problema na aritmetičkoj progresiji (uključujući one ponuđene na OGE).

Primjer (OGE). Aritmetička progresija dano uvjetima \(b_1=7; d=4\). Pronađite \(b_5\).
Odluka:

Odgovor: \(b_5=23\)

Primjer (OGE). Dana su prva tri člana aritmetičke progresije: \(62; 49; 36…\) Pronađite vrijednost prvog negativnog člana ove progresije..
Odluka:

Dobili smo prve elemente niza i znamo da je to aritmetička progresija. Odnosno, svaki se element razlikuje od susjednog istim brojem. Doznajte koji tako da od sljedećeg elementa oduzmete prethodni: \(d=49-62=-13\).

Sada možemo vratiti našu progresiju na željeni (prvi negativni) element.

Spreman. Možete napisati odgovor.

Odgovor: \(-3\)

Primjer (OGE). Zadano je nekoliko uzastopnih elemenata aritmetičke progresije: \(...5; x; 10; 12,5...\) Odredi vrijednost elementa označenog slovom \(x\).
Odluka:


Da bismo pronašli \(x\), moramo znati koliko se sljedeći element razlikuje od prethodnog, drugim riječima, razliku progresije. Nađimo ga iz dva poznata susjedna elementa: \(d=12,5-10=2,5\).

I sada bez problema nalazimo ono što tražimo: \(x=5+2,5=7,5\).


Spreman. Možete napisati odgovor.

Odgovor: \(7,5\).

Primjer (OGE). Dana aritmetička progresija sljedeće uvjete: \(a_1=-11\); \(a_(n+1)=a_n+5\) Pronađite zbroj prvih šest članova ove progresije.
Odluka:

Moramo pronaći zbroj prvih šest članova progresije. Ali mi ne znamo njihova značenja, dan nam je samo prvi element. Stoga prvo redom izračunavamo vrijednosti, koristeći sljedeće:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
I nakon što smo izračunali šest potrebnih elemenata, nalazimo njihov zbroj.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Traženi iznos je pronađen.

Odgovor: \(S_6=9\).

Primjer (OGE). U aritmetičkoj progresiji \(a_(12)=23\); \(a_(16)=51\). Pronađite razliku ove progresije.
Odluka:

Odgovor: \(d=7\).

Važne formule aritmetičke progresije

Kao što vidite, mnogi problemi aritmetičke progresije mogu se riješiti jednostavno razumijevanjem glavne stvari - da je aritmetička progresija lanac brojeva, a svaki sljedeći element u tom lancu dobiva se dodavanjem istog broja prethodnom (razlika progresije).

Međutim, ponekad postoje situacije kada je vrlo nezgodno riješiti "na čelu". Na primjer, zamislite da u prvom primjeru ne trebamo pronaći peti element \(b_5\), već tristo osamdeset šesti \(b_(386)\). Što je to, mi \ (385 \) puta da dodamo četiri? Ili zamislite da u pretposljednjem primjeru trebate pronaći zbroj prva sedamdeset i tri elementa. Brojanje je zbunjujuće...

Stoga se u takvim slučajevima ne rješava “na čelo”, već se koriste posebne formule izvedene za aritmetičku progresiju. A glavne su formula za n-ti član progresije i formula za zbroj \(n\) prvih članova.

Formula za \(n\)-ti član: \(a_n=a_1+(n-1)d\), gdje je \(a_1\) prvi član progresije;
\(n\) – broj traženog elementa;
\(a_n\) je član progresije s brojem \(n\).


Ova formula nam omogućuje da brzo pronađemo barem tristoti, čak i milijunti element, znajući samo prvi i razliku progresije.

Primjer. Aritmetička progresija dana je uvjetima: \(b_1=-159\); \(d=8,2\). Pronađite \(b_(246)\).
Odluka:

Odgovor: \(b_(246)=1850\).

Formula za zbroj prvih n članova je: \(S_n=\frac(a_1+a_n)(2) \cdot n\), gdje



\(a_n\) je posljednji zbrojeni izraz;


Primjer (OGE). Aritmetička progresija dana je uvjetima \(a_n=3,4n-0,6\). Pronađite zbroj prvih \(25\) članova ove progresije.
Odluka:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Da bismo izračunali zbroj prvih dvadeset i pet elemenata, moramo znati vrijednost prvog i dvadeset petog člana.
Naša progresija je dana formulom n-tog člana ovisno o njegovom broju (vidi detalje). Izračunajmo prvi element zamjenom \(n\) s jedan.

\(n=1;\) \(a_1=3,4 1-0,6=2,8\)

Pronađimo sada dvadeset peti član zamjenom dvadeset pet umjesto \(n\).

\(n=25;\) \(a_(25)=3,4 25-0,6=84,4\)

Pa, sada izračunavamo potrebnu količinu bez ikakvih problema.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Odgovor je spreman.

Odgovor: \(S_(25)=1090\).

Za zbroj \(n\) prvih članova, možete dobiti drugu formulu: samo trebate \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) umjesto \(a_n\) zamijenite ga formulom \(a_n=a_1+(n-1)d\). Dobivamo:

Formula za zbroj prvih n članova je: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), gdje

\(S_n\) – traženi zbroj \(n\) prvih elemenata;
\(a_1\) je prvi član koji se zbraja;
\(d\) – razlika progresije;
\(n\) - broj elemenata u zbroju.

Primjer. Nađite zbroj prvih \(33\)-ex članova aritmetičke progresije: \(17\); \(15,5\); \(četrnaest\)…
Odluka:

Odgovor: \(S_(33)=-231\).

Složeniji problemi aritmetičke progresije

Sada imate sve potrebne informacije za rješavanje gotovo bilo kojeg problema u aritmetičkoj progresiji. Završimo temu razmatranjem zadataka u kojima ne treba samo primjenjivati ​​formule, već i malo razmišljati (u matematici to može biti korisno ☺)

Primjer (OGE). Nađite zbroj svih negativnih članova progresije: \(-19,3\); \(-devetnaest\); \(-18,7\)…
Odluka:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Zadatak je vrlo sličan prethodnom. Počinjemo rješavati na isti način: prvo nađemo \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Sada bismo zamijenili \(d\) u formulu za zbroj ... i tu se pojavljuje mala nijansa - ne znamo \(n\). Drugim riječima, ne znamo koliko će termina trebati dodati. Kako saznati? Razmislimo. Prestat ćemo dodavati elemente kada dođemo do prvog pozitivnog elementa. To jest, morate saznati broj ovog elementa. Kako? Zapišimo formulu za izračun bilo kojeg elementa aritmetičke progresije: \(a_n=a_1+(n-1)d\) za naš slučaj.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1) 0,3\)

Trebamo \(a_n\) postati Iznad nule. Saznajmo za koliko \(n\) će se to dogoditi.

\(-19,3+(n-1) 0,3>0\)

\((n-1) 0,3>19,3\) \(|:0,3\)

Obje strane nejednadžbe dijelimo s \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Prebacujemo minus jedan, ne zaboravljajući promijeniti znakove

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Računalstvo...

\(n>65,333…\)

...i ispada da će prvi pozitivni element imati broj \(66\). Sukladno tome, zadnji negativ ima \(n=65\). Za svaki slučaj, provjerimo.

\(n=65;\) \(a_(65)=-19,3+(65-1) 0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1) 0,3=0,2\)

Dakle, moramo dodati prvih \(65\) elemenata.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Odgovor je spreman.

Odgovor: \(S_(65)=-630,5\).

Primjer (OGE). Aritmetička progresija dana je uvjetima: \(a_1=-33\); \(a_(n+1)=a_n+4\). Nađite zbroj od \(26\) do \(42\) elementa uključivo.
Odluka:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

U ovom zadatku također trebate pronaći zbroj elemenata, ali ne počevši od prvog, već od \(26\)-og. Nemamo formulu za to. Kako odlučiti?
Jednostavno - da biste dobili zbroj od \(26\) do \(42\), prvo morate pronaći zbroj od \(1\) do \(42\), a zatim od njega oduzeti zbroj od prvi do \ (25 \) th (vidi sliku).


Za našu progresiju \(a_1=-33\) i razliku \(d=4\) (uostalom, dodajemo četiri prethodnom elementu da bismo pronašli sljedeći). Znajući to, nalazimo zbroj prvih \(42\)-uh elemenata.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Sada zbroj prvih \(25\)-tih elemenata.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

I na kraju izračunavamo odgovor.

\(S=S_(42)-S_(25)=2058-375=1683\)

Odgovor: \(S=1683\).

Za aritmetičku progresiju postoji još nekoliko formula koje nismo razmatrali u ovom članku zbog njihove male praktične korisnosti. Međutim, lako ih možete pronaći.

Prilikom učenja algebre u srednjoj školi (9. razred) jedan od važne teme je studija nizovi brojeva, koji uključuju progresije - geometrijske i aritmetičke. U ovom ćemo članku razmotriti aritmetičku progresiju i primjere s rješenjima.

Što je aritmetička progresija?

Da bismo to razumjeli, potrebno je dati definiciju progresije koja se razmatra, kao i dati osnovne formule koje će se dalje koristiti u rješavanju problema.

Aritmetika ili je takav skup uređenih racionalnih brojeva, čiji se svaki član razlikuje od prethodnog za neku konstantnu vrijednost. Ova se vrijednost naziva razlika. To jest, znajući bilo koji član uređenog niza brojeva i razliku, možete vratiti cijelu aritmetičku progresiju.

Uzmimo primjer. Sljedeći niz brojeva bit će aritmetička progresija: 4, 8, 12, 16, ..., budući da je razlika u ovom slučaju 4 (8 - 4 = 12 - 8 = 16 - 12). Ali skup brojeva 3, 5, 8, 12, 17 više se ne može pripisati vrsti progresije koja se razmatra, jer razlika za njega nije konstantna vrijednost (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Važne formule

Sada dajemo osnovne formule koje će biti potrebne za rješavanje problema pomoću aritmetičke progresije. Označimo simbolom a n n-ti član nizova gdje je n cijeli broj. Označimo razliku latinično pismo d. Zatim sljedeće izraze:

  1. Za određivanje vrijednosti n-tog člana prikladna je formula: a n \u003d (n-1) * d + a 1.
  2. Za određivanje zbroja prvih n članova: S n = (a n + a 1)*n/2.

Da biste razumjeli sve primjere aritmetičke progresije s rješenjem u 9. razredu, dovoljno je zapamtiti ove dvije formule, budući da su svi problemi ove vrste izgrađeni na njihovoj upotrebi. Također, ne zaboravite da je razlika progresije određena formulom: d = a n - a n-1 .

Primjer #1: Pronalaženje nepoznatog člana

Dajemo jednostavan primjer aritmetičke progresije i formule koje se moraju koristiti za rješavanje.

Neka je dan niz 10, 8, 6, 4, ... potrebno je u njemu pronaći pet članova.

Već iz uvjeta zadatka proizlazi da su prva 4 člana poznata. Peti se može definirati na dva načina:

  1. Prvo izračunajmo razliku. Imamo: d = 8 - 10 = -2. Slično, mogu se uzeti bilo koja druga dva pojma koji stoje jedan pored drugog. Na primjer, d = 4 - 6 = -2. Pošto je poznato da je d \u003d a n - a n-1, onda je d \u003d a 5 - a 4, odakle dobivamo: a 5 \u003d a 4 + d. Zamjena poznate vrijednosti: a 5 = 4 + (-2) = 2.
  2. Druga metoda također zahtijeva poznavanje razlike dotične progresije, tako da je prvo morate odrediti, kao što je prikazano gore (d = -2). Znajući da je prvi član a 1 = 10, koristimo formulu za n broj niza. Imamo: a n \u003d (n - 1) * d + a 1 \u003d (n - 1) * (-2) + 10 \u003d 12 - 2 * n. Zamjenom n = 5 u zadnji izraz, dobivamo: a 5 = 12-2 * 5 = 2.

Kao što vidite, oba rješenja vode do istog rezultata. Imajte na umu da je u ovom primjeru razlika d progresije negativna vrijednost. Takvi se nizovi nazivaju padajućim jer je svaki naredni član manji od prethodnog.

Primjer #2: razlika u progresiji

Sada malo zakomplicirajmo zadatak, dajmo primjer kako pronaći razliku aritmetičke progresije.

Poznato je da je u nekoj algebarskoj progresiji 1. član jednak 6, a 7. član jednak 18. Potrebno je pronaći razliku i taj niz vratiti na 7. član.

Upotrijebimo formulu za određivanje nepoznatog člana: a n = (n - 1) * d + a 1 . U njega zamijenimo poznate podatke iz uvjeta, odnosno brojeve a 1 i a 7, imamo: 18 \u003d 6 + 6 * d. Iz ovog izraza lako možete izračunati razliku: d = (18 - 6) / 6 = 2. Time je prvi dio zadatka riješen.

Za vraćanje niza do 7 pojmova treba koristiti definiciju algebarska progresija, odnosno a 2 = a 1 + d, a 3 = a 2 + d i tako dalje. Kao rezultat, vraćamo cijeli niz: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 i 7 = 18.

Primjer #3: napredovanje

Učinimo to težim jače stanje zadaci. Sada morate odgovoriti na pitanje kako pronaći aritmetičku progresiju. Možemo navesti sljedeći primjer: dana su dva broja, npr. 4 i 5. Potrebno je napraviti algebarsku progresiju tako da između njih stanu još tri člana.

Prije nego što počnete rješavati ovaj problem, potrebno je razumjeti koje će mjesto dati brojevi zauzeti u budućoj progresiji. Budući da će između njih biti još tri člana, zatim 1 \u003d -4 i 5 \u003d 5. Nakon što smo to utvrdili, prelazimo na zadatak koji je sličan prethodnom. Opet, za n-ti izraz koristimo formulu, dobivamo: a 5 \u003d a 1 + 4 * d. Od: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2,25. Ovdje nismo dobili cjelobrojnu vrijednost razlike, ali jest racionalni broj, pa formule za algebarsku progresiju ostaju iste.

Dodajmo sada pronađenu razliku 1 i vratimo nedostajuće članove progresije. Dobivamo: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 \u003d 2,75 + 2,25 \u003d 5, koji se poklapao s uvjetom problema.

Primjer #4: Prvi član progresije

Nastavljamo davati primjere aritmetičke progresije s rješenjem. U svim prethodnim zadacima bio je poznat prvi broj algebarske progresije. Sada razmotrite problem drugačijeg tipa: neka su dana dva broja, gdje je 15 = 50 i 43 = 37. Potrebno je pronaći od kojeg broja počinje ovaj niz.

Formule koje su do sada korištene pretpostavljaju poznavanje a 1 i d. Ništa se ne zna o ovim brojevima u uvjetu zadatka. Ipak, ispišimo izraze za svaki pojam o kojem imamo informacije: a 15 = a 1 + 14 * d i a 43 = a 1 + 42 * d. Dobili smo dvije jednadžbe u kojima su 2 nepoznate veličine (a 1 i d). To znači da se problem svodi na rješavanje sustava linearnih jednadžbi.

Navedeni sustav je najlakše riješiti ako u svakoj jednadžbi izrazite 1, a zatim usporedite dobivene izraze. Prva jednadžba: a 1 = a 15 - 14 * d = 50 - 14 * d; druga jednadžba: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Izjednačavajući ove izraze, dobivamo: 50 - 14 * d \u003d 37 - 42 * d, odakle razlika d \u003d (37 - 50) / (42 - 14) \u003d - 0,464 (dana su samo 3 decimalna mjesta).

Znajući d, možete koristiti bilo koji od 2 gornja izraza za 1. Na primjer, prvo: a 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0,464) \u003d 56,496.

Ako postoje dvojbe oko rezultata, možete ga provjeriti, npr. odrediti 43. član progresije koji je naveden u uvjetu. Dobivamo: a 43 \u003d a 1 + 42 * d \u003d 56,496 + 42 * (- 0,464) \u003d 37,008. Mala pogreška je zbog činjenice da je u izračunima korišteno zaokruživanje na tisućinke.

Primjer #5: Zbroj

Sada pogledajmo neke primjere s rješenjima za zbroj aritmetičke progresije.

Neka se da numerička progresija sljedeća vrsta: 1, 2, 3, 4, ...,. Kako izračunati zbroj 100 ovih brojeva?

Zahvaljujući razvoju računalna tehnologija možete riješiti ovaj problem, to jest, redom zbrajati sve brojeve, koji Stroj za računanje učinit će čim osoba pritisne tipku Enter. Međutim, problem se može riješiti mentalno ako obratite pozornost da je prikazani niz brojeva algebarska progresija, a njegova razlika je 1. Primjenom formule za zbroj dobivamo: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Zanimljivo je primijetiti da se ovaj problem naziva "Gaussov" jer u početkom XVIII stoljeća, slavni Nijemac, još sa samo 10 godina, uspio ju je riješiti u mislima u nekoliko sekundi. Dječak nije znao formulu za zbroj algebarske progresije, ali je primijetio da ako zbrojite parove brojeva koji se nalaze na rubovima niza, uvijek ćete dobiti isti rezultat, odnosno 1 + 100 = 2 + 99. = 3 + 98 = ..., a budući da će ti zbrojevi biti točno 50 (100 / 2), onda je za točan odgovor dovoljno pomnožiti 50 sa 101.

Primjer #6: zbroj članova od n do m

Još tipičan primjer zbroj aritmetičke progresije je sljedeći: za dan niz brojeva: 3, 7, 11, 15, ..., trebate pronaći koliki će biti zbroj njegovih članova od 8 do 14.

Problem se rješava na dva načina. Prvi od njih uključuje pronalaženje nepoznatih pojmova od 8 do 14, a zatim njihovo uzastopno zbrajanje. Budući da ima malo pojmova, ova metoda nije dovoljno naporna. Ipak, predlaže se riješiti ovaj problem drugom metodom, koja je univerzalnija.

Ideja je dobiti formulu za zbroj algebarske progresije između članova m i n, gdje su n > m cijeli brojevi. Za oba slučaja pišemo dva izraza za zbroj:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Budući da je n > m, očito je da zbroj 2 uključuje prvi. Posljednji zaključak znači da ako uzmemo razliku između tih zbrojeva, i dodamo joj član a m (u slučaju uzimanja razlike, ona se oduzima od zbroja S n), tada dobivamo potreban odgovor na zadatak. Imamo: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). U ovaj izraz potrebno je zamijeniti formule za n i a m. Tada dobivamo: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Dobivena formula je donekle glomazna, međutim zbroj S mn ovisi samo o n, m, a 1 i d. U našem slučaju a 1 = 3, d = 4, n = 14, m = 8. Zamjenom ovih brojeva dobivamo: S mn = 301.

Kao što je vidljivo iz gornjih rješenja, svi zadaci temelje se na poznavanju izraza za n-ti član i formule za zbroj skupa prvih članova. Prije nego počnete rješavati bilo koji od ovih problema, preporuča se pažljivo pročitati uvjet, jasno razumjeti što želite pronaći i tek onda nastaviti s rješavanjem.

Još jedan savjet je da težite jednostavnosti, odnosno ako možete odgovoriti na pitanje bez korištenja složenih matematičkih izračuna, onda trebate učiniti upravo to, jer je u tom slučaju vjerojatnost pogreške manja. Na primjer, u primjeru aritmetičke progresije s rješenjem br. 6, moglo bi se zaustaviti na formuli S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, i podijeliti zajednički zadatak u zasebne podzadatke (in ovaj slučaj prvo pronađite pojmove a n i a m).

Ako postoje sumnje u dobiveni rezultat, preporuča se provjeriti ga, kao što je učinjeno u nekim od navedenih primjera. Kako pronaći aritmetičku progresiju, saznali smo. Nakon što to shvatite, nije tako teško.

Matrica A -1 naziva se inverzna matrica u odnosu na matricu A, ako je A * A -1 \u003d E, gdje je E - Matrica identiteta n-ti red. inverzna matrica može postojati samo za kvadratne matrice.

Dodjela usluge. Uz ovu uslugu, mrežni način rada mogu se naći algebarski komplementi, transponirana matrica A T , unijska matrica i inverzna matrica. Rješenje se provodi izravno na stranici (online) i besplatno je. Rezultati izračuna se prikazuju u izvješću u Word formatu iu Excel formatu (odnosno moguće je provjeriti rješenje). pogledajte primjer dizajna.

Uputa. Da biste dobili rješenje, morate odrediti dimenziju matrice. Zatim u novom dijaloškom okviru ispunite matricu A .

Dimenzija matrice 2 3 4 5 6 7 8 9 10

Vidi također Inverzna matrica po Jordan-Gauss metodi

Algoritam za pronalaženje inverzne matrice

  1. Nalaženje transponirane matrice A T .
  2. Definicija algebarskih adicija. Svaki element matrice zamijenite njegovim algebarskim komplementom.
  3. Sastavljanje inverzne matrice iz algebarskih dodavanja: svaki element rezultirajuće matrice podijeljen je determinantom izvorne matrice. Rezultirajuća matrica je inverzna izvornoj matrici.
Sljedeći algoritam inverzne matrice sličan prethodnom, osim nekoliko koraka: prvo izračunajte algebarski dodaci, a zatim se odredi unijska matrica C.
  1. Odredite je li matrica kvadratna. Ako nije, onda za to ne postoji inverzna matrica.
  2. Izračunavanje determinante matrice A . Ako nije jednaka nuli, nastavljamo rješavanje, u suprotnom, inverzna matrica ne postoji.
  3. Definicija algebarskih adicija.
  4. Popunjavanje unijske (međusobne, adjungirane) matrice C .
  5. Sastavljanje inverzne matrice iz algebarskih sabiranja: svaki element adjungirane matrice C podijeli se s determinantom izvorne matrice. Rezultirajuća matrica je inverzna izvornoj matrici.
  6. Napravite provjeru: pomnožite izvornu i dobivenu matricu. Rezultat bi trebala biti matrica identiteta.

Primjer #1. Matricu pišemo u obliku:


Algebarski dodaci.
A 1,1 = (-1) 1+1
-1 -2
5 4

∆ 1,1 = (-1 4-5 (-2)) = 6
A 1,2 = (-1) 1+2
2 -2
-2 4

∆ 1,2 = -(2 4-(-2 (-2))) = -4
A 1,3 = (-1) 1+3
2 -1
-2 5

∆ 1,3 = (2 5-(-2 (-1))) = 8
A 2,1 = (-1) 2+1
2 3
5 4

∆ 2,1 = -(2 4-5 3) = 7
A 2,2 = (-1) 2+2
-1 3
-2 4

∆ 2,2 = (-1 4-(-2 3)) = 2
A 2,3 = (-1) 2+3
-1 2
-2 5

∆ 2,3 = -(-1 5-(-2 2)) = 1
A 3,1 = (-1) 3+1
2 3
-1 -2

∆ 3,1 = (2 (-2)-(-1 3)) = -1
A 3,2 = (-1) 3+2
-1 3
2 -2

∆ 3,2 = -(-1 (-2)-2 3) = 4
A 3,3 = (-1) 3+3
-1 2
2 -1

∆ 3,3 = (-1 (-1)-2 2) = -3
Zatim inverzna matrica može se napisati kao:
A -1 = 1/10
6 -4 8
7 2 1
-1 4 -3

A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Još jedan algoritam za pronalaženje inverzne matrice

Predstavljamo drugu shemu za pronalaženje inverzne matrice.
  1. Nalazimo odrednicu ovoga kvadratna matrica A.
  2. Svim elementima matrice A nalazimo algebarske dodatke.
  3. Algebarske komplemente elemenata redaka upisujemo u stupce (transpozicija).
  4. Svaki element dobivene matrice podijelimo s determinantom matrice A .
Kao što vidite, operacija transpozicije može se primijeniti i na početku, preko izvorne matrice, i na kraju, preko rezultirajućih algebarskih dodavanja.

Poseban slučaj: Inverz, u odnosu na matricu identiteta E, je matrica identiteta E .

Online kalkulator.
Rješenje aritmetičke progresije.
Zadano: a n , d, n
Pronađite: a 1

Ovaj matematički program pronalazi \(a_1\) aritmetičke progresije na temelju korisnički navedenih brojeva \(a_n, d \) i \(n \).
Brojevi \(a_n\) i \(d \) mogu se specificirati ne samo kao cijeli brojevi, već i kao razlomci. Štoviše, razlomački broj može se unijeti kao decimala (\(2,5 \)) i kao obični razlomak(\(-5\frac(2)(7) \)).

Program ne samo da daje odgovor na problem, već također prikazuje proces pronalaženja rješenja.

Ovaj online kalkulator može biti koristan srednjoškolcima općeobrazovne škole u pripremi za kontrolni rad i ispite, prilikom provjere znanja prije ispita, roditeljima za kontrolu rješavanja mnogih zadataka iz matematike i algebre. Ili vam je možda preskupo unajmiti učitelja ili kupiti nove udžbenike? Ili samo želite to obaviti što je prije moguće? domaća zadaća matematika ili algebra? U tom slučaju također možete koristiti naše programe s detaljnim rješenjem.

Dakle, možete izvršiti svoje vlastiti trening i/ili njihovo osposobljavanje mlađa braća ili sestara, dok se povećava stupanj obrazovanja u području zadataka koji se rješavaju.

Ukoliko niste upoznati s pravilima unosa brojeva, preporučamo da se s njima upoznate.

Pravila za unos brojeva

Brojevi \(a_n\) i \(d \) mogu se specificirati ne samo kao cijeli brojevi, već i kao razlomci.
Broj \(n\) može biti samo pozitivan cijeli broj.

Pravila za unos decimalnih razlomaka.
Cijeli i razlomački dio u decimalnim razlomcima mogu biti odvojeni točkom ili zarezom.
Na primjer, možete unijeti decimale dakle 2.5 ili tako 2.5

Pravila za upisivanje običnih razlomaka.
Samo cijeli broj može biti brojnik, nazivnik i cijeli broj razlomka.

Nazivnik ne može biti negativan.

Kad uđeš brojčani razlomak Brojnik je od nazivnika odvojen znakom dijeljenja: /
Ulazni:
Rezultat: \(-\frac(2)(3) \)

cijeli dio odvojen od razlomka znakom &: &
Ulazni:
Rezultat: \(-1\frac(2)(3) \)

Upiši brojeve a n , d, n


Pronađite 1

Utvrđeno je da neke skripte potrebne za rješavanje ovog zadatka nisu učitane i program možda neće raditi.
Možda imate omogućen AdBlock.
U tom slučaju, onemogućite ga i osvježite stranicu.

U pregledniku vam je onemogućen JavaScript.
JavaScript mora biti omogućen da bi se rješenje pojavilo.
Ovdje su upute o tome kako omogućiti JavaScript u svom pregledniku.

Jer Puno je ljudi koji žele riješiti problem, vaš zahtjev je u redu.
Nakon nekoliko sekundi, rješenje će se pojaviti ispod.
Molimo pričekajte sekund...


Ako ti uočio grešku u rješenju, tada možete pisati o tome u obrascu za povratne informacije.
Ne zaboravi navesti koji zadatak ti odluči što unesite u polja.



Naše igre, zagonetke, emulatori:

Malo teorije.

Numerički niz

Numeriranje se često koristi u svakodnevnoj praksi. razne predmete da naznači njihov redoslijed. Na primjer, kuće u svakoj ulici su numerirane. U knjižnici se čitateljske pretplate numeriraju, a zatim slažu po redoslijedu dodijeljenih brojeva u posebne ormare.

U štedionici po broju osobnog računa deponenta lako možete pronaći taj račun i vidjeti kakav depozit ima. Neka bude depozit od a1 rubalja na računu br. 1, depozit od a2 rubalja na računu br. 2, itd. Ispada brojčani niz
a 1, a 2, a 3, ..., a N
gdje je N broj svih računa. Ovdje je svakom prirodnom broju n od 1 do N pridružen broj a n .

Matematika također proučava beskonačni brojčani nizovi:
a 1 , a 2 , a 3 , ..., a n , ... .
Poziva se broj a 1 prvi član niza, broj a 2 - drugi član niza, broj a 3 - treći član niza itd.
Broj a n naziva se n-ti (n-ti) član niza, a prirodni broj n je njegov broj.

Na primjer, u nizu kvadrata prirodni brojevi 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 , ... i 1 = 1 je prvi član niza; i n = n 2 je n-ti član sekvence; a n+1 = (n + 1) 2 je (n + 1)-ti (en plus prvi) član niza. Često se niz može odrediti formulom njegovog n-tog člana. Na primjer, formula \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) daje niz \(1, \; \frac(1)(2) , \; \frac( 1)(3) , \; \frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Aritmetička progresija

Dužina godine je otprilike 365 dana. Točnija vrijednost je \(365\frac(1)(4) \) dana, tako da se svake četiri godine akumulira pogreška od jednog dana.

Kako bi se objasnila ova pogreška, svakoj četvrtoj godini dodaje se dan, a produljena godina naziva se prijestupnom.

Na primjer, u trećem tisućljeću prijestupne godine godine su 2004, 2008, 2012, 2016, ... .

U tom nizu je svaki član, počevši od drugog, jednak prethodnom, zbrojenom s istim brojem 4. Takve nizove nazivamo aritmetičke progresije.

Definicija.
Brojčani niz a 1 , a 2 , a 3 , ..., a n , ... naziva se aritmetička progresija, ako za sve prirodne n vrijedi jednakost
\(a_(n+1) = a_n+d, \)
gdje je d neki broj.

Iz ove formule slijedi da je a n+1 - a n = d. Broj d naziva se razlika aritmetička progresija.

Po definiciji aritmetičke progresije imamo:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
gdje
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), gdje \(n>1 \)

Dakle, svaki član aritmetičke progresije, počevši od drugog, jednak je aritmetičkoj sredini dvaju njemu susjednih članova. Ovo objašnjava naziv "aritmetička" progresija.

Imajte na umu da ako su zadani a 1 i d, tada se preostali članovi aritmetičke progresije mogu izračunati pomoću rekurzivne formule a n+1 = a n + d. Na ovaj način nije teško izračunati prvih nekoliko članova progresije, međutim, na primjer, za 100 već će biti potrebno mnogo izračuna. Obično se za to koristi formula n-tog člana. Prema definiciji aritmetičke progresije
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d\)
itd.
Uopće,
\(a_n=a_1+(n-1)d, \)
budući da se n-ti član aritmetičke progresije dobiva iz prvog člana zbrajanjem (n-1) puta broja d.
Ova formula se zove formula n-tog člana aritmetičke progresije.

Zbroj prvih n članova aritmetičke progresije

Nađimo zbroj svih prirodnih brojeva od 1 do 100.
Ovaj zbroj zapisujemo na dva načina:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Ove jednakosti zbrajamo član po član:
2S = 101 + 101 + 101 + ... + 101 + 101.
U ovom zbroju ima 100 pojmova.
Prema tome, 2S = 101 * 100, odakle je S = 101 * 50 = 5050.

Razmotrimo sada proizvoljnu aritmetičku progresiju
a 1, a 2, a 3, ..., a n, ...
Neka je S n zbroj prvih n članova ove progresije:
S n \u003d a 1, a 2, a 3, ..., a n
Zatim zbroj prvih n članova aritmetičke progresije je
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Budući da \(a_n=a_1+(n-1)d \), onda zamjenom n u ovoj formuli, dobivamo drugu formulu za pronalaženje zbrojevi prvih n članova aritmetičke progresije:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Knjige (udžbenici) Sažeci Jedinstvenog državnog ispita i OGE testova online Igre, zagonetke Izgradnja grafova funkcija Pravopisni rječnik ruskog jezika Rječnik žargona mladih Imenik ruskih škola Katalog srednjih škola u Rusiji Katalog ruskih sveučilišta Popis zadataka

Što glavna točka formule?

Ova formula vam omogućuje da pronađete bilo koji NJEGOVIM BROJEM" n" .

Naravno, morate znati prvi pojam a 1 i razlika u progresiji d, pa, bez ovih parametara ne možete zapisati određeni napredak.

Nije dovoljno zapamtiti (ili prevariti) ovu formulu. Potrebno je usvojiti njegovu bit i primijeniti formulu u raznim zadacima. I ne zaboravite pravi trenutak, ali kako ne zaboraviti- Ne znam. I ovdje kako zapamtiti Ako treba, dat ću vam savjet. Za one koji savladaju lekciju do kraja.)

Dakle, pozabavimo se formulom n-tog člana aritmetičke progresije.

Što je uopće formula - zamišljamo.) Što je aritmetička progresija, broj člana, razlika progresije - jasno je rečeno u prethodnoj lekciji. Baci oko ako nisi čitao. Tamo je sve jednostavno. Ostaje shvatiti što n-ti član.

napredovanje u opći pogled može se napisati kao niz brojeva:

a 1, a 2, a 3, a 4, a 5, .....

a 1- označava prvi član aritmetičke progresije, a 3- treći član a 4- četvrti, i tako dalje. Ako nas zanima peti mandat, recimo da radimo sa a 5, ako je sto dvadeseti - od a 120.

Kako općenito definirati bilo kojičlan aritmetičke progresije, s bilo koji broj? Jako jednostavno! Kao ovo:

a n

To je ono što je n-ti član aritmetičke progresije. Pod slovom n kriju se odjednom svi brojevi članova: 1, 2, 3, 4 i tako dalje.

I što nam takav rekord daje? Zamislite, umjesto broja napisali su slovo...

Ova nam notacija daje moćan alat za rad s aritmetičkim progresijama. Koristeći notni zapis a n, možemo brzo pronaći bilo kojičlan bilo koji aritmetička progresija. I hrpa zadataka za rješavanje u progresiji. Vidjet ćete dalje.

U formuli n-tog člana aritmetičke progresije:

a n = a 1 + (n-1)d

a 1- prvi član aritmetičke progresije;

n- broj člana.

Formula povezuje ključne parametre bilo koje progresije: a n ; a 1; d i n. Oko ovih parametara sve se zagonetke vrte u progresiji.

Formula n-tog člana također se može koristiti za pisanje određene progresije. Na primjer, u problemu se može reći da je progresija dana uvjetom:

a n = 5 + (n-1) 2.

Takav problem može čak i zbuniti ... Nema serije, nema razlike ... Ali, uspoređujući stanje s formulom, lako je shvatiti da u ovoj progresiji a 1 \u003d 5 i d \u003d 2.

A može biti još ljući!) Ako uzmemo isti uvjet: a n = 5 + (n-1) 2, da, otvorite zagrade i navedite slične? Dobivamo novu formulu:

an = 3 + 2n.

Ovaj Samo ne općenito, već za određeni napredak. Tu leži zamka. Neki ljudi misle da je prvi član trojka. Iako je u stvarnosti prvi član pet ... Malo niže ćemo raditi s tako modificiranom formulom.

U zadacima za napredovanje postoji još jedna oznaka - a n+1. Ovo je, pogađate, "n plus prvi" član progresije. Njegovo značenje je jednostavno i bezopasno.) Ovo je član progresije čiji je broj za jedan veći od broja n. Na primjer, ako u nekom problemu uzmemo za a n peti mandat, dakle a n+1 bit će šesti član. itd.

Najčešće oznaka a n+1 javlja se u rekurzivnim formulama. Ne bojte se ove strašne riječi!) Ovo je samo način izražavanja člana aritmetičke progresije kroz prethodni. Pretpostavimo da nam je dana aritmetička progresija u ovom obliku, koristeći rekurentnu formulu:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Četvrti - kroz treći, peti - kroz četvrti, i tako dalje. I kako odmah brojati, recimo dvadeseti pojam, a 20? Ali nema šanse!) Dok se 19. mandat ne zna, 20. se ne može računati. To je temeljna razlika između rekurzivne formule i formule n-tog člana. Rekurzivno radi samo kroz prethodničlan, a formula n-tog člana - kroz prvi i dopušta odmah pronaći bilo kojeg člana prema njegovom broju. Ne računajući cijeli niz brojeva po redu.

U aritmetičkoj progresiji, rekurzivna formula se lako može pretvoriti u regularnu. Prebrojite par uzastopnih članova, izračunajte razliku d, pronađite, ako je potrebno, prvi član a 1, napišite formulu u uobičajenom obliku i radite s njom. U GIA se takvi zadaci često nalaze.

Primjena formule n-tog člana aritmetičke progresije.

Prvo, pogledajmo izravnu primjenu formule. Na kraju prethodne lekcije pojavio se problem:

S obzirom na aritmetičku progresiju (a n). Pronađite 121 ako je a 1 =3 i d=1/6.

Ovaj se problem može riješiti bez ikakvih formula, jednostavno na temelju značenja aritmetičke progresije. Dodajte, da dodajte ... Sat ili dva.)

A prema formuli, rješenje će trajati manje od minute. Možete tempirati.) Mi odlučujemo.

Uvjeti daju sve podatke za korištenje formule: a 1 \u003d 3, d \u003d 1/6. Ostaje za vidjeti što n. Nema problema! Moramo pronaći a 121. Ovdje pišemo:

Molim obratite pozornost! Umjesto indeksa n pojavio se određeni broj: 121. Što je sasvim logično.) Zanima nas član aritmetičke progresije. broj sto dvadeset jedan. Ovo će biti naše n. Ovo je značenje n= 121 zamijenit ćemo dalje u formulu, u zagradi. Zamijenite sve brojeve u formuli i izračunajte:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

To je sve. Jednako tako brzo bi se mogao pronaći petsto deseti član, a tisuću i treći bilo koji. Umjesto toga stavljamo nželjeni broj u indeksu slova " a" i u zagradi, i smatramo.

Dopustite mi da vas podsjetim na bit: ova formula vam omogućuje da pronađete bilo kojičlan aritmetičke progresije NJEGOVIM BROJEM" n" .

Riješimo problem pametnije. Recimo da imamo sljedeći problem:

Nađite prvi član aritmetičke progresije (a n) ako je a 17 =-2; d=-0,5.

Ako budete imali poteškoća, predložit ću vam prvi korak. Zapiši formulu za n-ti član aritmetičke progresije! Da da. Napišite rukom, izravno u svoju bilježnicu:

a n = a 1 + (n-1)d

I sada, gledajući slova formule, razumijemo koje podatke imamo, a što nedostaje? Dostupno d=-0,5, postoji sedamnaesti član ... Sve? Ako mislite da je to sve, onda ne možete riješiti problem, da ...

Imamo i broj n! U stanju a 17 =-2 skriven dvije mogućnosti. To je i vrijednost sedamnaestog člana (-2) i njegov broj (17). Oni. n=17. Ta "sitnica" često promakne pokraj glave, a bez nje, (bez "sitnice", ne glave!) problem se ne može riješiti. Iako ... i bez glave.)

Sada možemo samo glupo zamijeniti naše podatke u formulu:

a 17 \u003d a 1 + (17-1) (-0,5)

O da, a 17 znamo da je -2. U redu, stavimo to u:

-2 \u003d a 1 + (17-1) (-0,5)

To je, u biti, sve. Preostaje izraziti prvi član aritmetičke progresije iz formule i izračunati. Dobijate odgovor: a 1 = 6.

Takva tehnika - pisanje formule i jednostavna zamjena poznatih podataka - puno pomaže u jednostavni zadaci. Pa, morate, naravno, moći izraziti varijablu iz formule, ali što učiniti!? Bez ove vještine matematika se uopće ne može proučavati ...

Još jedan popularan problem:

Odredite razliku aritmetičke progresije (a n) ako je a 1 =2; a 15 =12.

Što radimo? Iznenadit ćete se, mi pišemo formulu!)

a n = a 1 + (n-1)d

Razmotrite ono što znamo: a 1 =2; a 15 =12; i (poseban naglasak!) n=15. Slobodno zamijenite u formuli:

12=2 + (15-1)d

Idemo računati.)

12=2 + 14d

d=10/14 = 5/7

Ovo je točan odgovor.

Dakle, zadaci a n, a 1 i d odlučio. Ostaje naučiti kako pronaći broj:

Broj 99 je član aritmetičke progresije (a n), gdje je a 1 =12; d=3. Pronađite broj ovog člana.

Zamijenimo poznate količine u formulu n-tog člana:

a n = 12 + (n-1) 3

Ovdje su na prvi pogled nepoznate dvije veličine: a n i n. Ali a n je neki član progresije s brojem n... A ovaj član progresije znamo! 99 je. Ne znamo njegov broj. n, pa treba pronaći i ovaj broj. Zamijenite progresivni član 99 u formulu:

99 = 12 + (n-1) 3

Izražavamo iz formule n, mi mislimo. Dobijamo odgovor: n=30.

A sada problem na istu temu, ali kreativniji):

Odredite hoće li broj 117 biti član aritmetičke progresije (a n):

-3,6; -2,4; -1,2 ...

Napišimo formulu ponovno. Što, nema opcija? Hm... Zašto nam trebaju oči?) Vidimo li prvi član progresije? Mi vidimo. Ovo je -3,6. Možete slobodno napisati: a 1 \u003d -3,6. Razlika d može se odrediti iz serije? Lako je ako znate koja je razlika aritmetičke progresije:

d = -2,4 - (-3,6) = 1,2

Da, napravili smo najjednostavniju stvar. Ostaje još da se pozabavimo nepoznatim brojem n a nerazumljivi broj 117. U prethodnom zadatku barem se znalo da je zadan član progresije. Ali kod nas to ni ne znamo... Kako biti!? Pa kako biti, kako biti... Uključi Kreativne vještine!)

Mi pretpostaviti da je 117 ipak član naše progresije. S nepoznatim brojem n. I, baš kao u prethodnom zadatku, pokušajmo pronaći ovaj broj. Oni. pišemo formulu (da-da!)) i zamjenjujemo naše brojeve:

117 = -3,6 + (n-1) 1,2

Opet izražavamo iz formulen, računamo i dobivamo:

Ups! Broj je ispao razlomak! Sto jedan i pol. I razlomačke brojeve u progresijama ne može biti. Kakav zaključak izvlačimo? Da! Broj 117 niječlan naše progresije. Nalazi se negdje između 101. i 102. člana. Ako se broj pokazao prirodnim, tj. pozitivan cijeli broj, tada bi broj bio član progresije s pronađenim brojem. A u našem slučaju, odgovor na problem će biti: Ne.

Na temelju zadatka prava verzija GIA:

Aritmetička progresija dana je uvjetom:

a n \u003d -4 + 6,8n

Pronađite prvi i deseti član progresije.

Ovdje je progresija postavljena na neobičan način. Neka vrsta formule ... Događa se.) Međutim, ova formula (kao što sam gore napisao) - također formula n-tog člana aritmetičke progresije! Ona također dopušta pronađite bilo koji član progresije po njegovom broju.

Tražimo prvog člana. Onaj koji misli. da je prvi član minus četiri, fatalno je pogrešno!) Jer je formula u zadatku modificirana. Prvi član aritmetičke progresije u njemu skriven. Ništa, sad ćemo to pronaći.)

Kao iu prethodnim zadacima, vršimo zamjenu n=1 u ovu formulu:

a 1 \u003d -4 + 6,8 1 \u003d 2,8

Ovdje! Prvi član je 2,8, a ne -4!

Slično, tražimo deseti član:

a 10 \u003d -4 + 6,8 10 \u003d 64

To je sve.

A sada, za one koji su pročitali do ovih redaka, obećani bonus.)

Pretpostavimo da ste u teškoj borbenoj situaciji GIA ili Jedinstveni državni ispit zaboravili korisna formula n-ti član aritmetičke progresije. Nešto mi pada na pamet, ali nekako nesigurno... Da li n tamo, ili n+1, ili n-1... Kako biti!?

Smiriti! Ovu je formulu lako izvesti. Nije baš strogo, ali sigurno i prava odluka dosta je!) Za zaključak je dovoljno sjetiti se elementarnog značenja aritmetičke progresije i imati par minuta vremena. Samo trebate nacrtati sliku. Radi jasnoće.

Nacrtamo numeričku os i na njoj označimo prvu. drugi, treći itd. članova. I primijetite razliku d između članova. Kao ovo:

Gledamo sliku i razmišljamo: čemu je jednak drugi član? Drugi jedan d:

a 2 =a 1 + 1 d

Što je treći pojam? Treći pojam je prvi pojam plus dva d.

a 3 =a 1 + 2 d

shvaćate li Ne stavljam neke riječi podebljane uzalud. U redu, još jedan korak.)

Što je četvrti pojam? Četvrti pojam je prvi pojam plus tri d.

a 4 =a 1 + 3 d

Vrijeme je da shvatimo da broj praznina, tj. d, stalno jedan manje od broja člana kojeg tražite n. Odnosno do broja n, broj praznina htjeti n-1. Dakle, formula će biti (bez opcija!):

a n = a 1 + (n-1)d

Općenito, vizualne slike su od velike pomoći u rješavanju mnogih problema u matematici. Ne zanemarujte slike. Ali ako je teško nacrtati sliku, onda ... samo formula!) Osim toga, formula n-tog člana omogućuje vam da povežete cijeli moćni arsenal matematike s rješenjem - jednadžbe, nejednadžbe, sustavi itd. Ne možete staviti sliku u jednadžbu...

Zadaci za samostalno rješavanje.

Za zagrijavanje:

1. U aritmetičkoj progresiji (a n) a 2 =3; a 5 \u003d 5.1. Pronađite 3.

Savjet: prema slici, problem se rješava za 20 sekundi ... Prema formuli, ispada teže. Ali za svladavanje formule to je korisnije.) U odjeljku 555 ovaj je problem riješen i slikom i formulom. Osjeti razliku!)

I ovo više nije zagrijavanje.)

2. U aritmetičkoj progresiji (a n) a 85 \u003d 19,1; a 236 =49, 3. Nađi a 3 .

Što, nevoljkost crtanja slike?) Ipak! Bolje je u formuli, da ...

3. Aritmetička progresija dana je uvjetom:a 1 \u003d -5,5; a n+1 = a n +0,5. Pronađite stotinu dvadeset peti član ove progresije.

U ovom se zadatku napredovanje daje na ponavljajući način. Ali računajući do stotinu dvadeset i petog člana... Ne može svatko učiniti takav podvig.) Ali formula n-tog člana je u moći svakoga!

4. S obzirom na aritmetičku progresiju (a n):

-148; -143,8; -139,6; -135,4, .....

Odredite broj najmanjeg pozitivnog člana progresije.

5. Prema uvjetu zadatka 4. pronađite zbroj najmanjeg pozitivnog i najvećeg negativnog člana progresije.

6. Umnožak petog i dvanaestog člana rastuće aritmetičke progresije je -2,5, a zbroj trećeg i jedanaestog člana je nula. Pronađite 14.

Nije najlakši zadatak, da ...) Ovdje metoda "na prstima" neće raditi. Morate pisati formule i rješavati jednadžbe.

Odgovori (u neredu):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Dogodilo se? Lijepo je!)

Ne ide sve? Događa se. Usput, u posljednjem zadatku postoji jedna suptilna točka. Bit će potrebna pažnja pri čitanju problema. I logika.

O rješenju svih ovih problema detaljno se govori u odjeljku 555. I element fantazije za četvrti, i suptilni trenutak za šesti, i opći pristupi za rješavanje bilo kakvih problema na formuli n-tog člana - sve je naslikano. Preporučam.

Ako vam se sviđa ova stranica...

Usput, imam još nekoliko zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoju razinu. Testiranje uz trenutnu provjeru. Učenje - sa zanimanjem!)

možete se upoznati s funkcijama i derivacijama.